
COMP 520 - Compilers

Lecture 15 – PA4 Details

1

Midterm 2 Postponed to 4/11

• WA3 is out
• Quick questions on REX bit flags, stack framing, and x64

• PA3 – If you haven’t submitted yet, make sure to
submit to Partial only. Your first submission to the
“Full” tests will be your grade, minus a late penalty.

2
COMP 520: Compilers – S. Ali

Midterm 2

• Cumulative
• Know your:

• Identification
• Type-Checking
• Visitor Traversal
• Assembly Generation

3
COMP 520: Compilers – S. Ali

PA4 – A Unique Opportunity

• Have the ability to claim that you wrote a REAL
compiler.

4
COMP 520: Compilers – S. Ali

PA4 – A Unique Opportunity

• Have the ability to claim that you wrote a REAL
compiler.

• Starter code does the mundane parts of code
generation (make sure bytes are in the right order,
make sure you can set the REX prefix after-the-fact).

5
COMP 520: Compilers – S. Ali

Course Registration Open

• For our seniors: Show them what UNC students are
capable of. You wrote an x64 compiler, a feat not
many are capable of.

6
COMP 520: Compilers – S. Ali

Course Registration Open

• For our seniors: Show them what UNC students are
capable of. You wrote an x64 compiler, a feat not
many are capable of.

• For those who will continue with their coursework: if
you didn’t let this class beat you, there shouldn’t be
any other class that can. Treat each as a challenge.

7
COMP 520: Compilers – S. Ali

Highly Suggested Courses

An essential course if
you want to call yourself a computer scientist.
Difficult, but you will look back on it fondly.

2. COMP 630/541. Get to write an OS / get to
construct a processor, nearly from scratch.

8
COMP 520: Compilers – S. Ali

Let’s get coding!

9
COMP 520: Compilers – S. Ali

Instruction Encoding (c-jump.com)

10
COMP 520: Compilers – S. Ali

Quick Review of ModRM/SIB

•ModRM: http://ref.x86asm.net/coder64.html#modrm_byte_32_64

•SIB: http://ref.x86asm.net/coder64.html#sib_byte_32_64

11
COMP 520: Compilers – S. Ali

http://ref.x86asm.net/coder64.html#modrm_byte_32_64
http://ref.x86asm.net/coder64.html#sib_byte_32_64

Instruction Encoding (c-jump.com)

12
COMP 520: Compilers – S. Ali

STEP ONE

Mod RM

• Used to allow operands: rm, r or [rdisp+disp],r
• Register operands are encoded in the ModRM byte.

13
COMP 520: Compilers – S. Ali

Mod RM (2)

• Used to allow operands: rm, r or [rdisp+disp],r
• Register operands are encoded in this byte.

• Do you have plain registers?
• Yes: mod=11
• No: mod=??

14
COMP 520: Compilers – S. Ali

Mod RM (3)

• Memory operation, like [rdisp+disp]
• Do you have a zero displacement?

• Mod=00
• Do you have a 1-byte displacement?

• Mod=01
• 4-byte displacement?

• Mod=10

15
COMP 520: Compilers – S. Ali

01 010 110

16
COMP 520: Compilers – S. Ali

Mod Value “R” Index “Rdisp” Index

01 010 110

17
COMP 520: Compilers – S. Ali

Mod Value
=1 byte disp

“R” Index
RDX=2

“Rdisp” Index
RSI=6

Combined: [rsi+XX],rdx

01 010 110

18
COMP 520: Compilers – S. Ali

Mod Value
=1 byte disp

“R” Index
RDX=2

“Rdisp” Index
RSI=6

Combined: [rsi+XXYYZZWW],rdx

10 010 110

19
COMP 520: Compilers – S. Ali

Mod Value
=4 byte disp

“R” Index
RDX=2

“Rdisp” Index
RSI=6

ModRM

• When mod≠11, is the displacement register RSP?

• Then you are forced to output an SIB, even if you
don’t have an index.

20
COMP 520: Compilers – S. Ali

ModRM

• When mod≠11, is the displacement register RSP?

• Then you are forced to output an SIB, even if you
don’t have an index.

• Note: there is an entry in the SIB table to just ignore
the index anyway.

21
COMP 520: Compilers – S. Ali

Instruction Encoding (c-jump.com)

22
COMP 520: Compilers – S. Ali

STEP TWO

Scaled Index Byte: ridx*mult

• Is your index multiplier x1, x2, x4, x8?
• Then, ss= 00, 01, 10, 11 respectively

• Note, for SIB, a displacement register has not yet been
picked.

• SIB forces the ModRM “rdisp” register to be RSP

23
COMP 520: Compilers – S. Ali

Combined: [rsi+rcx*2+XX],r

01 001 110

24
COMP 520: Compilers – S. Ali

SS Value
=multiply by 2

“RIDX” Index
RCX=1

“RDISP” Index
RSI=6

Take care for exceptions

• Note, RSP cannot be used as an index register.
• Question: what other intricacies are there, and why?

25
COMP 520: Compilers – S. Ali

Take care for exceptions

• Note, RSP cannot be used as an index register.
• Question: what other intricacies are there, and why?

• If getting stuck, it may be useful to draw out a
decision tree.

26
COMP 520: Compilers – S. Ali

PA4 x64 Code Generation

27
COMP 520: Compilers – S. Ali

Step 1: Finish ModRMSIB Class

• There is starter code on the course website.
• The ModRMSIB class decides which registers are used

in an instruction (it doesn’t care about order, but just
the operands themselves).

28
COMP 520: Compilers – S. Ali

Step 1: Finish ModRMSIB Class

• There is starter code on the course website.
• The ModRMSIB class decides which registers are used

in an instruction (it doesn’t care about order, but just
the operands themselves).

• The “Make” methods need to be completed. An
example for “rm,r” is done.

29
COMP 520: Compilers – S. Ali

ModRMSIB Strategy

• Test instances of this class.
• Output the bytes, and make sure your implementation

matches what is on the table.

30
COMP 520: Compilers – S. Ali

Make Methods: rm, r

31
COMP 520: Compilers – S. Ali

Make: [rdisp+disp],r

Implement this inside:

private void Make(

Reg64 rdisp, int disp, Reg r

)

32
COMP 520: Compilers – S. Ali

Make: [ridx*mult+disp],r

Implement this inside:

private void Make(

Reg64 ridx, int mult, int disp, Reg r

)

33
COMP 520: Compilers – S. Ali

Make: [rdisp+ridx*mult+disp],r

Implement this inside:

private void Make(

Reg64 rdisp, Reg64 ridx, int mult, int disp, Reg r

)

34
COMP 520: Compilers – S. Ali

Once you have encoded the table in these
methods…

• You are done with the most difficult part of encoding
assembly into bytecode.

• The operands are the hardest part, and the rest is
material you have seen before.

35
COMP 520: Compilers – S. Ali

Once you have encoded the table in these
methods…

• You are done with the most difficult part of encoding
assembly into bytecode.

• The operands are the hardest part, and the rest is
material you have seen before.

• Opcodes get some bytes, Prefixes get some bytes, and
immediates get some bytes.

36
COMP 520: Compilers – S. Ali

Unsure about how something is encoded?

• Check the tool: https://defuse.ca/online-x86-assembler.htm#disassembly2

• Test things such as “mov r11,[r10+r8*8+2222]” to
make sure your implementation gets the correct
ModRM and SIB bytes

37
COMP 520: Compilers – S. Ali

https://defuse.ca/online-x86-assembler.htm#disassembly2

Unsure about how something is encoded?

• Check the tool: https://defuse.ca/online-x86-assembler.htm#disassembly2

• Test things such as “mov r11,[r10+r8*8+2222]” to
make sure your implementation gets the correct
ModRM and SIB bytes

38
COMP 520: Compilers – S. Ali

https://defuse.ca/online-x86-assembler.htm#disassembly2

Code Generation and Visitor
Traversal

39
COMP 520: Compilers – S. Ali

Instruction

• Instruction is an abstract class that has some
associated bytecode with it.

• Includes prefix bytes, immediate bytes, …

 All of these:

40
COMP 520: Compilers – S. Ali

Instruction (2)

• The first instruction has a start address of zero.
• …
• The next instruction has a start address of the

previous instruction start address + size.

41
COMP 520: Compilers – S. Ali

Instruction List

• A list of instructions with a few extra items.
• If you add an Instruction to an InstructionList, it will

populate the startAddress and listIdx fields.

• (Where listIdx is the index of the instruction, e.g., the
0th instruction has a listIdx of 0).

42
COMP 520: Compilers – S. Ali

Instruction Implementations

• Several files in the starter code are marked with
TODOs.

• Find these and implement them just like with
ModRMSIB.

43
COMP 520: Compilers – S. Ali

Example: JMP Imm32

• Consider unconditional jump: jmp imm32

• In our instruction list, find it, opcode 0xE9.

44
COMP 520: Compilers – S. Ali

Example: JMP Imm32

• Consider unconditional jump: jmp imm32

• In our instruction list, find it, opcode 0xE9.
• Then implement it:
• Take notes: the imm32

is an offset from the
start of the next ins.

45
COMP 520: Compilers – S. Ali

Read other implementations as well!

• IDIV: Divide RDX:RAX / rm
•RDX: 00000001, RAX: 00000001

46
COMP 520: Compilers – S. Ali

Read other implementations as well!

• IDIV: Divide RDX:RAX / rm
•RDX: 00000001, RAX: 00000001
• Thus, the operand becomes:

• 4294967297 / rm

• E.g.: 4294967297 / [rbp-16]

47
COMP 520: Compilers – S. Ali

Operands created with ModRMSIB

• How can we actually generate x64?

48
COMP 520: Compilers – S. Ali

Operands created with ModRMSIB

new Push(new
ModRMSIB(Reg64.RBP,16)

);

Analogous to:
 push [rbp+16]

49
COMP 520: Compilers – S. Ali

Operands created with ModRMSIB

new Push(new
ModRMSIB(Reg64.RBP,16)

);

new Mov_rrm(new ModRMSIB(
 Reg64.RSI,Reg64.RCX,4,0x1000,Reg64.RDX

);

Analogous to:
 push [rbp+16]

 mov rdx, [rsi+rcx*4+0x1000]

50
COMP 520: Compilers – S. Ali

Operands created with ModRMSIB

new Push(new
ModRMSIB(Reg64.RBP,16)

);

new Mov_rrm(new ModRMSIB(
 Reg64.RSI,Reg64.RCX,4,0x1000,Reg64.RDX

);

Analogous to:
 push [rbp+16]

 mov rdx, [rsi+rcx*4+0x1000]

51
COMP 520: Compilers – S. Ali

R operand, then RM operand (so move from memory to register)

mov rm,r

Don’t always need to dereference memory locations.

Mov_rmr can also take a plain:
 new ModRMSIB(Reg64.RCX, Reg64.RDX)

Results in: mov rcx,rdx

52
COMP 520: Compilers – S. Ali

AST Decoration

53
COMP 520: Compilers – S. Ali

54
COMP 520: Compilers – S. Ali

Identifiers get updated with
a “decl” object

This is now a decorated AST

55
COMP 520: Compilers – S. Ali

Identifiers get updated with
a “decl” object

We need additional decorations
• Where is a variable in memory?
• Let’s store that in the AST!

• We will need a point(er) of reference, and map out
our memory appropriately.

• We call this data the “RuntimeEntity” object, for each
variable.

56
COMP 520: Compilers – S. Ali

Runtime Entity

LocalDecl Type

int x = 3; int ≡ 4 bytes

int y = x + 7; int ≡ 4 bytes

57
COMP 520: Compilers – S. Ali

Reference Offset

rbp -8

rbp -16 ???

Stack

• Push and Pop always operate 64-bits at a time
• This is because we are in 64-bit mode (long mode)
• Thus, storing data on the stack will always be 8 bytes

long.

58
COMP 520: Compilers – S. Ali

Runtime Entity

LocalDecl Type

int x = 3; int ≡ 4 bytes

int y = x + 7; int ≡ 4 bytes

SomeObj A = new A(); ClassType ≡ 8 bytes

59
COMP 520: Compilers – S. Ali

Reference Offset Code

rbp -8 push 0 ??

rbp -16 push 0 ??

rbp -24 push 0 ??

Push
• We will create space on the stack by initializing data to

zero.

• Push will decrement RSP by 8, THEN store the data
being pushed

• After evaluating the expression, store something in
the appropriate location.

60
COMP 520: Compilers – S. Ali

Static Variables
• We are targeting position-independent code
• This means that .bss is not easy to resolve.
• In PA5- optional extra credit to properly implement

.bss

• For PA4- where can we store static data? (Note, if it
stays on the stack, doesn’t have to be 8 bytes)

61
COMP 520: Compilers – S. Ali

What about recursion?
• Consider:

Every call of this
function needs a
separate location
for the local variable y and parameter x

62
COMP 520: Compilers – S. Ali

Stack Frame

• Every function call, move up your point of reference
(which can be RBP or RSP).

63
COMP 520: Compilers – S. Ali

Stack Frame
• Every function call, move up your point of reference

(which can be RBP or RSP).
• Consider a static method: fn(x)

64
COMP 520: Compilers – S. Ali

x [return addr] ?? ?? ??

RSP
When method starts

RSP+8 RSP-8 RSP-16

Stack Frame

• Consider after local variables declared:

65
COMP 520: Compilers – S. Ali

x [return addr] Old RBP Local var1 ??

RBP
RSP+8

RBP+8
RSP+16

RBP-8
RSP

RBP-16
RSP-8

RBP+16
RSP+24

New Local about to be declared

Stack Frame

• Consider after local variables declared:
• Thus, easier to reference data from rbp (assuming you

set up your stack frame correctly)

66
COMP 520: Compilers – S. Ali

x [return addr] Old RBP Local var1 Local var2

RBP
RSP+16

RBP+8
RSP+24

RBP-8
RSP+8

RBP-16
RSP

RBP+16
RSP+32

Member Variables (FieldDecl)

• Where are field variables?
• First, let’s figure out the size of a class.

67
COMP 520: Compilers – S. Ali

Member Variables (FieldDecl)

• Where are field variables?
• First, let’s figure out the size of a class.

• Objects should be allocated on the heap. Meaning
their data should not be on the stack.

• Instead, an object is just an 8 byte pointer

68
COMP 520: Compilers – S. Ali

Map out the data

FieldDecl Runtime Entity Size ASM

int x Base + 0 4 dword [r+0]

int y Base + 4 4 dword [r+4]

A z Base + 8 8 qword [r+8]

69
COMP 520: Compilers – S. Ali

How was the data allocated?

push 0
call mmap

mov [rbp-8],rax

??

A a = new a();

a.y = 3;

70
COMP 520: Compilers – S. Ali

How was the data allocated?

push 0
call mmap

mov [rbp-8],rax

mov rsi,[rbp-8]
mov [rsi+4],3

A a = new a();

a.y = 3;

71
COMP 520: Compilers – S. Ali

FieldDecl
• Thus, the runtime entity for a FieldDecl is, once again,

some offset

• The base address can be loaded during runtime
(unlike being an offset from RBP)

72
COMP 520: Compilers – S. Ali

What about this.x?

• What if we are in an instance method?
• Where is the “current object: this”?

73
COMP 520: Compilers – S. Ali

Instance Methods

• SomeClass.myStaticMethod(x) – pretty normal
• a.nonStaticMethod(x,y) – slightly different

74
COMP 520: Compilers – S. Ali

Stack Frame

• a.nonStaticMethod(x,y) – Hidden “this” parameter
• Will be used to find FieldDecl variables in the current

object instance.

75
COMP 520: Compilers – S. Ali

y x this [return] Old rbp ??

RBP+16
RSP+16

RBP+24
RSP+24

RBP+8
RSP+8

RBP
RSP

RBP+32
RSP+32

System.out.println

• Recall for PA4, miniJava is incomplete because String
has not yet been implemented (optional for PA5)

• We take in a parameter, and need to output it on the
screen

76
COMP 520: Compilers – S. Ali

System Calls

• We will be using the SYS_write system call to output
data to the console.

• Where fd=stdout=1

77
COMP 520: Compilers – S. Ali

Read the mmap system call in starter files

• Find out how sys_write is called, it is very similar to
sys_mmap

• Implement sys_write where the int parameter to
System.out.println(int n) is the output byte.

• The printable character ‘0’ is 48, take care for this
when testing.

78
COMP 520: Compilers – S. Ali

System.out.println

• Outputs one byte (null terminated, so two bytes)
• Do not output a line break (can do this in PA5)

• System.out.println(53)
• System.out.println(50)
• System.out.println(48)
• What will this output? Consult a hex-ascii table.

79
COMP 520: Compilers – S. Ali

Actual Code Generation Step

80
COMP 520: Compilers – S. Ali

Case study: Flat Assembler

• A very simple assembler, outputs x86_64 bytecode
• It compiles the code 3 times (known as passes)

• Only then does it reach “optimization level zero”

81
COMP 520: Compilers – S. Ali

Quick Note: Optimization Level

• Compilers can optimize your code by rewriting it
efficiently (restructuring your ASTs is one method)

• -O0 (letter O, number zero) does no optimization

82
COMP 520: Compilers – S. Ali

Quick Note: Optimization Level

• Compilers can optimize your code by rewriting it
efficiently (restructuring your ASTs is one method)

• -O0 (letter O, number zero) does no optimization

• We do not require multiple passes to reach level 0,
you can instead output inefficient “less than O0” code

83
COMP 520: Compilers – S. Ali

Strategy: Stack-based evaluation

• Everything should be evaluated on the stack, and
loaded into registers for only short code portions

84
COMP 520: Compilers – S. Ali

Goal: Expressions

• Evaluate: 3+4*5-6

85
COMP 520: Compilers – S. Ali

Goal: Expressions

• Evaluate: 3+4*5

• visitBinExpr: (visit LHS, visit RHS expressions)

86
COMP 520: Compilers – S. Ali

Goal: Expressions

• Evaluate: 3+4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 3
• RHS: visitBinExpr: ?

87
COMP 520: Compilers – S. Ali

Stack

3

Goal: Expressions

• Evaluate: 4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 4
• RHS: visitBinExpr: push 5

88
COMP 520: Compilers – S. Ali

Stack

5
4
3

Goal: Expressions

• Evaluate: 4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 4
• RHS: visitBinExpr: push 5

• Operator is multiply:
• pop rcx, pop rax # Get two operands

89
COMP 520: Compilers – S. Ali

Stack

5 -> X
4 -> X

3

Registers

rax 4
rcx 5

Goal: Expressions

• Evaluate: 4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 4
• RHS: visitBinExpr: push 5

• Operator is multiply:
• pop rcx, pop rax # Get two operands
• imul rcx # Multiply

90
COMP 520: Compilers – S. Ali

Stack

-
-
-
3

Registers

rax 20
rcx 5

Goal: Expressions

• Evaluate: 4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 4
• RHS: visitBinExpr: push 5

• Operator is multiply:
• pop rcx, pop rax # Get two operands
• imul rcx # Multiply
• push rax

91
COMP 520: Compilers – S. Ali

Stack

-
-

20
3

Registers

rax 20
rcx 5

Goal: Expressions

• Evaluate: 3+4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 3
• RHS: visitBinExpr: (done earlier)

92
COMP 520: Compilers – S. Ali

Stack

-
-

20
3

Goal: Expressions

• Evaluate: 3+4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 3
• RHS: visitBinExpr: (done earlier)

• Operator is addition:
• pop rcx, pop rax # get two operands

93
COMP 520: Compilers – S. Ali

Stack

-
-

20 -> X
3 -> X

Registers

rax 3
rcx 20

Goal: Expressions

• Evaluate: 3+4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 3
• RHS: visitBinExpr: (done earlier)

• Operator is addition:
• pop rcx, pop rax # get two operands
• add rax, rcx # do the addition

94
COMP 520: Compilers – S. Ali

Stack

-
-
-
-

Registers

rax 23
rcx 20

Goal: Expressions

• Evaluate: 3+4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 3
• RHS: visitBinExpr: (done earlier)

• Operator is addition:
• pop rcx, pop rax # get two operands
• add rax, rcx # do the addition
• push rax # store

95
COMP 520: Compilers – S. Ali

Stack

-
-
-

23

Registers

rax 3
rcx 20

Finally:

• int x = 3+4*5;

• 3+4*5: resolves to 23 on the stack
• Thus:
 pop rax
 mov [rbp-8],rax
• And our local variable now has a value!

96
COMP 520: Compilers – S. Ali

Stack

-
-
-

23 -> X

Registers

rax 23
rcx 20

int x = 3 + 4 * 5;

push 0 # create int x
push 3 # visitLiteralExpr
push 4 # visitLiteralExpr
push 5 # visitLiteralExpr
pop rcx
pop rax
imul rcx
push rax # do 4*5

97
COMP 520: Compilers – S. Ali

int x = 3 + 4 * 5;

push 0 # create int x
push 3 # visitLiteralExpr
push 4 # visitLiteralExpr
push 5 # visitLiteralExpr
pop rcx
pop rax
imul rcx
push rax # do 4*5

pop rcx # load the evaluated 4*5
pop rax # load the earlier 3 (LHS)
add rax,rcx # do LHS+RHS
push rax # store result on stack
pop rax # get result
mov [rbp-8],rax # store in x

98
COMP 520: Compilers – S. Ali

Is it really necessary?

push 4 # visitLiteralExpr
push 5 # visitLiteralExpr
pop rcx
pop rax

Why not: mov rcx,5
 mov rax,4

99
COMP 520: Compilers – S. Ali

That would actually be the second pass

• We will go more in-depth about optimization soon,
but for now, unoptimized code is fine.

• Idea: “condense X pushes, and Y pops (where X=Y)
into move operations”

• Can wait until PA5

100
COMP 520: Compilers – S. Ali

Visit Identifier?

Goal: 3 + y

101
COMP 520: Compilers – S. Ali

Visit Identifier?

Goal: 3 + y
• push 3
• push [rbp-16] # Push it on the stack
• pop rcx
• pop rax
• add rax,rcx

102
COMP 520: Compilers – S. Ali

Second Pass (Opcode size reduction)

• Recall cache slides from earlier
• Why do I want to reduce the size of my code?

103
COMP 520: Compilers – S. Ali

Third Pass (instruction size reduction)

• Recall cache slides from earlier

• In your first pass, you greedily pick the largest
instructions for jumps and calls

• Recall: jump and call is (mostly) relative from your
current position

104
COMP 520: Compilers – S. Ali

Third Pass (instruction size reduction)

• Recall: jump and call is (mostly) relative from your
current position

• If we have to patch the instruction, then we want to
patch it with the same instruction size.

105
COMP 520: Compilers – S. Ali

Consider:

je 0 (1 byte offset) (Address=0) if(x) {
 …
}

106
COMP 520: Compilers – S. Ali

Consider:

je 0 (1 byte offset) (Address=0)
A bunch of code is generated

(Address=0x30C)

Cannot jump to this address
using a single byte!!

if(x) {
 …
}

107
COMP 520: Compilers – S. Ali

Consider:

je 0 (4 byte offset) (Address=0)
A bunch of code is generated

(Address=0x30C)

Cannot jump to this address
using a single byte!!

Correct solution: greedily pick 4
byte offset instructions because
we do not know the offset yet!

if(x) {
 …
}

108
COMP 520: Compilers – S. Ali

Instruction Patching

109
COMP 520: Compilers – S. Ali

Starter Code

• Recall: InstructionList populates the startAddress and
listIdx data of any added Instruction object.

• With this listIdx, we can patch it later.

110
COMP 520: Compilers – S. Ali

Consider:

if(y) {

…
…

}

visitExpression()
_asm.add(new “cmp [rsp],0”);

Instruction jmp = new CondJmp(Cond.E, 0);
_asm.add(jmp);
ifStmt.thenStmt.visit(this); # Generate Code

111
COMP 520: Compilers – S. Ali

Consider:

if(y) {
…
…

}

…
Instruction jmp = new CondJmp(Cond.E, 0);
_asm.add(jmp);
thenStmt.visit(…);
_asm.patch(jmp.listIdx,
 new CondJmp(Cond.E,
 … Evaluate offset here …
)
);

112
COMP 520: Compilers – S. Ali

Consider:

if(y) {
…
…

}

…
Instruction jmp = new CondJmp(Cond.E, 0);
_asm.add(jmp);
thenStmt.visit(…);
_asm.patch(jmp.listIdx,
 new CondJmp(Cond.E,
 jmp.startAddress, _asm.size()
)
);

113
COMP 520: Compilers – S. Ali

Current Address

Old Address

This constructor will calculate
the relative offset of these two
addresses.

One more thing!

• Under the previous code, visiting a reference loads its
value on the stack.

• But what about:
a.x = 3;

I need to load it’s ADDRESS when visiting something on
the left-hand-side of an assignment operation.

114
COMP 520: Compilers – S. Ali

Resolving Assignment Destination

• First: QualRef is resolved exactly like you think it
should be.

• a.b.c.x
“Load pointer a” -> “ClassA.b is offset +16”
 -> “ClassB.c is offset +8”
 -> “ClassC.x is offset +0”

115
COMP 520: Compilers – S. Ali

Resolving QualRef Destination

•a.b.c.x = ?
“Load pointer a” -> “a.b is offset +16” -> “b.c is offset
+8” -> “c.x is offset +0”
mov rax,[rbp-8] # Load local “a”
mov rax,[rax+16] # Load a.b pointer

116
COMP 520: Compilers – S. Ali

Resolving Assignment Destination

•a.b.c.x = ?
“Load pointer a” -> “a.b is offset +16” -> “b.c is offset
+8” -> “c.x is offset +0”
mov rax,[rbp-8] # Load local “a”
mov rax,[rax+16] # Load a.b pointer
mov rax,[rax+8] # Load b.c pointer
mov rax,[rax] # Load data at c.x ?????

117
COMP 520: Compilers – S. Ali

Resolving QualRef Destination

•a.b.c.x = ?
“Load pointer a” -> “a.b is offset +16” -> “b.c is offset
+8” -> “c.x is offset +0”
mov rax,[rbp-8] # Load local “a”
mov rax,[rax+16] # Load a.b pointer
mov rax,[rax+8] # Load b.c pointer
lea rax,[rax+0] # Load address at c.x

118
COMP 520: Compilers – S. Ali

Resolving QualRef Destination

•visitExpression() # 3 is on the stack
•a.b.c.x = 3
mov rax,[rbp-8] # Load local “a”
mov rax,[rax+16] # Load a.b pointer
mov rax,[rax+8] # Load b.c pointer
lea rax,[rax] # Load address at c.x
pop [rax] # Store top of stack at address rax

119
COMP 520: Compilers – S. Ali

ELF Generation

120
COMP 520: Compilers – S. Ali

ELF Generation

• Let’s be honest, this is not an interesting problem
• You already have seen ELF headers before.

121
COMP 520: Compilers – S. Ali

ELF Generation

• Additionally: testing proper ELF files is a pain

• There is almost no way to tell if your ELF file is
correctly generated without having a correctly
generated file that can execute.

122
COMP 520: Compilers – S. Ali

ELF Generation

• Additionally: testing proper ELF files is a pain

• There is almost no way to tell if your ELF file is correctly
generated without having a correctly generated file that
can execute.

• Lastly, this is just making sure “this byte goes to that spot,
that byte here, that byte there”

• You’ve already proven this capability
(otherwise you wouldn’t be taking a 500 level class)

123
COMP 520: Compilers – S. Ali

ELF Generation

• What IS important though: read through the starter
code

• Fill out how segment and section flags are assigned

• That part is very important.

124
COMP 520: Compilers – S. Ali

PIE

• What is a position-
independent executable?

• http://www.sunshine2k.de/coding/javascript/on
lineelfviewer/onlineelfviewer.html

125
COMP 520: Compilers – S. Ali

PIE

• Every section (and
segment) is just
sequentially laid out in the
file.

• Linux realizes this, and
loads sections at whatever
memory address is
convenient for it.

126
COMP 520: Compilers – S. Ali

PIE

• This is useful for loading
shared objects into
another executable.

127
COMP 520: Compilers – S. Ali

PIE

• This is useful for loading
shared objects into
another executable.

•Downside: we won’t
easily know where
sections are in memory.

128
COMP 520: Compilers – S. Ali

What is helpful in PIE?

• Note, you must have a loaded readable SEGMENT that
contains the program headers (data on the segments)

• It is helpful to have a section called .shstrtab

129
COMP 520: Compilers – S. Ali

SHSTRTAB

• This section is just a list of names

130
COMP 520: Compilers – S. Ali

ELF Generation

• Fill out the TODO parts in the ELFMaker class
• Once this is done, your code will be generating

executable files

131
COMP 520: Compilers – S. Ali

Code Testing

132
COMP 520: Compilers – S. Ali

Compile some test file locally

• Assume you are in the folder where “bin” contains
your class files (compiled Compiler)

java –cp bin miniJava.Compiler ../my/test/file.java

133
COMP 520: Compilers – S. Ali

Compile some test file locally

• Assume you are in the folder where “bin” contains
your class files (compiled Compiler)

java –cp bin miniJava.Compiler ../my/test/file.java

This will output your “a.out” file.

134
COMP 520: Compilers – S. Ali

SSH to a server I set up

ssh comp520@home.digital-haze.org -p 52025

Username: comp520
Password: comp520

135
COMP 520: Compilers – S. Ali

SSH to a server I set up

ssh comp520@home.digital-haze.org -p 52025

Username: comp520
Password: comp520

Create a folder for yourself with your onyen:
mkdir swali

136
COMP 520: Compilers – S. Ali

Use FileZilla (or any other method)

• Connect to the server:

137
COMP 520: Compilers – S. Ali

Enter your folder

138
COMP 520: Compilers – S. Ali

Double Click

139
COMP 520: Compilers – S. Ali

Drag and drop

Run your a.out file

• Make sure the output matches what you were
expecting.

140
COMP 520: Compilers – S. Ali

End

141

142
COMP 520: Compilers – S. Ali

143
COMP 520: Compilers – S. Ali

144
COMP 520: Compilers – S. Ali

145
COMP 520: Compilers – S. Ali

	COMP 520 - Compilers
	Midterm 2 Postponed to 4/11
	Midterm 2
	PA4 – A Unique Opportunity
	PA4 – A Unique Opportunity
	Course Registration Open
	Course Registration Open
	Highly Suggested Courses
	Let’s get coding!
	Instruction Encoding (c-jump.com)
	Quick Review of ModRM/SIB
	Instruction Encoding (c-jump.com)
	Mod RM
	Mod RM (2)
	Mod RM (3)
	Slide Number 16
	Slide Number 17
	Combined: [rsi+XX],rdx
	Combined: [rsi+XXYYZZWW],rdx
	ModRM
	ModRM
	Instruction Encoding (c-jump.com)
	Scaled Index Byte: ridx*mult
	Combined: [rsi+rcx*2+XX],r
	Take care for exceptions
	Take care for exceptions
	PA4 x64 Code Generation
	Step 1: Finish ModRMSIB Class
	Step 1: Finish ModRMSIB Class
	ModRMSIB Strategy
	Make Methods: rm, r
	Make: [rdisp+disp],r
	Make: [ridx*mult+disp],r
	Make: [rdisp+ridx*mult+disp],r
	Once you have encoded the table in these methods…
	Once you have encoded the table in these methods…
	Unsure about how something is encoded?
	Unsure about how something is encoded?
	Code Generation and Visitor Traversal
	Instruction
	Instruction (2)
	Instruction List
	Instruction Implementations
	Example: JMP Imm32
	Example: JMP Imm32
	Read other implementations as well!
	Read other implementations as well!
	Operands created with ModRMSIB
	Operands created with ModRMSIB
	Operands created with ModRMSIB
	Operands created with ModRMSIB
	mov rm,r
	AST Decoration
	Slide Number 54
	This is now a decorated AST
	We need additional decorations
	Runtime Entity
	Stack
	Runtime Entity
	Push
	Static Variables
	What about recursion?
	Stack Frame
	Stack Frame
	Stack Frame
	Stack Frame
	Member Variables (FieldDecl)
	Member Variables (FieldDecl)
	Map out the data
	How was the data allocated?
	How was the data allocated?
	FieldDecl
	What about this.x?
	Instance Methods
	Stack Frame
	System.out.println
	System Calls
	Read the mmap system call in starter files
	System.out.println
	Actual Code Generation Step
	Case study: Flat Assembler
	Quick Note: Optimization Level
	Quick Note: Optimization Level
	Strategy: Stack-based evaluation
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Finally:
	int x = 3 + 4 * 5;
	int x = 3 + 4 * 5;
	Is it really necessary?
	That would actually be the second pass
	Visit Identifier?
	Visit Identifier?
	Second Pass (Opcode size reduction)
	Third Pass (instruction size reduction)
	Third Pass (instruction size reduction)
	Consider:
	Consider:
	Consider:
	Instruction Patching
	Starter Code
	Consider:
	Consider:
	Consider:
	One more thing!
	Resolving Assignment Destination
	Resolving QualRef Destination
	Resolving Assignment Destination
	Resolving QualRef Destination
	Resolving QualRef Destination
	ELF Generation
	ELF Generation
	ELF Generation
	ELF Generation
	ELF Generation
	PIE
	PIE
	PIE
	PIE
	What is helpful in PIE?
	SHSTRTAB
	ELF Generation
	Code Testing
	Compile some test file locally
	Compile some test file locally
	SSH to a server I set up
	SSH to a server I set up
	Use FileZilla (or any other method)
	Enter your folder
	Slide Number 139
	Run your a.out file
	End
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145

