
COMP 520 - Compilers

Lecture 15 – PA4 Details
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Midterm 2 Postponed to 4/11

• WA3 is out
• Quick questions on REX bit flags, stack framing, and x64

• PA3 – If you haven’t submitted yet, make sure to 
submit to Partial only. Your first submission to the 
“Full” tests will be your grade, minus a late penalty.
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Midterm 2

• Cumulative
• Know your:

• Identification
• Type-Checking
• Visitor Traversal
• Assembly Generation
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PA4 – A Unique Opportunity

• Have the ability to claim that you wrote a REAL 
compiler.
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PA4 – A Unique Opportunity

• Have the ability to claim that you wrote a REAL 
compiler.

• Starter code does the mundane parts of code 
generation (make sure bytes are in the right order, 
make sure you can set the REX prefix after-the-fact).
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Course Registration Open

• For our seniors: Show them what UNC students are 
capable of. You wrote an x64 compiler, a feat not 
many are capable of.
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Course Registration Open

• For our seniors: Show them what UNC students are 
capable of. You wrote an x64 compiler, a feat not 
many are capable of.

• For those who will continue with their coursework: if 
you didn’t let this class beat you, there shouldn’t be 
any other class that can. Treat each as a challenge.
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Highly Suggested Courses

An essential course if 
you want to call yourself a computer scientist. 
Difficult, but you will look back on it fondly.

2. COMP 630/541. Get to write an OS / get to 
construct a processor, nearly from scratch.
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Let’s get coding!
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Instruction Encoding (c-jump.com)
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Quick Review of ModRM/SIB

•ModRM: http://ref.x86asm.net/coder64.html#modrm_byte_32_64

•SIB: http://ref.x86asm.net/coder64.html#sib_byte_32_64
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http://ref.x86asm.net/coder64.html#modrm_byte_32_64
http://ref.x86asm.net/coder64.html#sib_byte_32_64


Instruction Encoding (c-jump.com)
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STEP ONE



Mod RM

• Used to allow operands: rm, r or [rdisp+disp],r
• Register operands are encoded in the ModRM byte.
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Mod RM (2)

• Used to allow operands: rm, r or [rdisp+disp],r
• Register operands are encoded in this byte.

• Do you have plain registers?
• Yes: mod=11
• No: mod=??
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Mod RM (3) 

• Memory operation, like [rdisp+disp]
• Do you have a zero displacement?

• Mod=00
• Do you have a 1-byte displacement?

• Mod=01
• 4-byte displacement?

• Mod=10
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01    010    110
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Mod Value “R” Index “Rdisp” Index



01    010    110
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Mod Value
=1 byte disp

“R” Index
RDX=2

“Rdisp” Index
RSI=6



Combined: [rsi+XX],rdx

01    010    110
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Mod Value
=1 byte disp

“R” Index
RDX=2

“Rdisp” Index
RSI=6



Combined: [rsi+XXYYZZWW],rdx

10    010    110
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Mod Value
=4 byte disp

“R” Index
RDX=2

“Rdisp” Index
RSI=6



ModRM

• When mod≠11, is the displacement register RSP?

• Then you are forced to output an SIB, even if you 
don’t have an index.
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ModRM

• When mod≠11, is the displacement register RSP?

• Then you are forced to output an SIB, even if you 
don’t have an index.

• Note: there is an entry in the SIB table to just ignore 
the index anyway.
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Instruction Encoding (c-jump.com)
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STEP TWO



Scaled Index Byte: ridx*mult

• Is your index multiplier x1, x2, x4, x8?
• Then, ss= 00, 01, 10, 11 respectively

• Note, for SIB, a displacement register has not yet been 
picked.

• SIB forces the ModRM “rdisp” register to be RSP

23
COMP 520: Compilers – S. Ali



Combined: [rsi+rcx*2+XX],r

01    001    110
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SS Value
=multiply by 2

“RIDX” Index
RCX=1

“RDISP” Index
RSI=6



Take care for exceptions

• Note, RSP cannot be used as an index register.
• Question: what other intricacies are there, and why?
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Take care for exceptions

• Note, RSP cannot be used as an index register.
• Question: what other intricacies are there, and why?

• If getting stuck, it may be useful to draw out a 
decision tree.
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PA4 x64 Code Generation
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Step 1: Finish ModRMSIB Class

• There is starter code on the course website.
• The ModRMSIB class decides which registers are used 

in an instruction (it doesn’t care about order, but just 
the operands themselves).

28
COMP 520: Compilers – S. Ali



Step 1: Finish ModRMSIB Class

• There is starter code on the course website.
• The ModRMSIB class decides which registers are used 

in an instruction (it doesn’t care about order, but just 
the operands themselves).

• The “Make” methods need to be completed. An 
example for “rm,r” is done.
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ModRMSIB Strategy

• Test instances of this class.
• Output the bytes, and make sure your implementation 

matches what is on the table.
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Make Methods: rm, r
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Make: [rdisp+disp],r

Implement this inside:

private void Make(

Reg64 rdisp, int disp, Reg r

 )
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Make: [ridx*mult+disp],r

Implement this inside:

private void Make(

Reg64 ridx, int mult, int disp, Reg r

 )
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Make: [rdisp+ridx*mult+disp],r

Implement this inside:

private void Make(

Reg64 rdisp, Reg64 ridx, int mult, int disp, Reg r

 )
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Once you have encoded the table in these 
methods…

• You are done with the most difficult part of encoding 
assembly into bytecode.

• The operands are the hardest part, and the rest is 
material you have seen before.
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Once you have encoded the table in these 
methods…

• You are done with the most difficult part of encoding 
assembly into bytecode.

• The operands are the hardest part, and the rest is 
material you have seen before.

• Opcodes get some bytes, Prefixes get some bytes, and 
immediates get some bytes.
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Unsure about how something is encoded?

• Check the tool: https://defuse.ca/online-x86-assembler.htm#disassembly2

• Test things such as “mov r11,[r10+r8*8+2222]” to 
make sure your implementation gets the correct 
ModRM and SIB bytes
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Unsure about how something is encoded?

• Check the tool: https://defuse.ca/online-x86-assembler.htm#disassembly2

• Test things such as “mov r11,[r10+r8*8+2222]” to 
make sure your implementation gets the correct 
ModRM and SIB bytes
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https://defuse.ca/online-x86-assembler.htm#disassembly2


Code Generation and Visitor 
Traversal
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Instruction

• Instruction is an abstract class that has some 
associated bytecode with it.

• Includes prefix bytes, immediate bytes, …

                                All of these:
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Instruction (2)

• The first instruction has a start address of zero.
• …
• The next instruction has a start address of the 

previous instruction start address + size.
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Instruction List

• A list of instructions with a few extra items.
• If you add an Instruction to an InstructionList, it will 

populate the startAddress and listIdx fields.

• (Where listIdx is the index of the instruction, e.g., the 
0th instruction has a listIdx of 0).
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Instruction Implementations

• Several files in the starter code are marked with 
TODOs.

• Find these and implement them just like with 
ModRMSIB.
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Example: JMP Imm32

• Consider unconditional jump: jmp imm32

• In our instruction list, find it, opcode 0xE9.
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Example: JMP Imm32

• Consider unconditional jump: jmp imm32

• In our instruction list, find it, opcode 0xE9.
• Then implement it:
• Take notes: the imm32

is an offset from the
start of the next ins.
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Read other implementations as well!

• IDIV: Divide RDX:RAX / rm
•RDX: 00000001, RAX: 00000001
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Read other implementations as well!

• IDIV: Divide RDX:RAX / rm
•RDX: 00000001, RAX: 00000001
• Thus, the operand becomes:

• 4294967297 / rm

• E.g.: 4294967297 / [rbp-16]
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Operands created with ModRMSIB

• How can we actually generate x64?
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Operands created with ModRMSIB

new Push(new 
ModRMSIB(Reg64.RBP,16)

 );

Analogous to:
   push [rbp+16]
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Operands created with ModRMSIB

new Push(new 
ModRMSIB(Reg64.RBP,16)

 );

new Mov_rrm(new ModRMSIB(
   Reg64.RSI,Reg64.RCX,4,0x1000,Reg64.RDX

 );

Analogous to:
   push [rbp+16]

   mov rdx, [rsi+rcx*4+0x1000]
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Operands created with ModRMSIB

new Push(new 
ModRMSIB(Reg64.RBP,16)

 );

new Mov_rrm(new ModRMSIB(
   Reg64.RSI,Reg64.RCX,4,0x1000,Reg64.RDX

 );

Analogous to:
   push [rbp+16]

   mov rdx, [rsi+rcx*4+0x1000]
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R operand, then RM operand (so move from memory to register)



mov rm,r

Don’t always need to dereference memory locations.

Mov_rmr can also take a plain:
 new ModRMSIB( Reg64.RCX, Reg64.RDX )

Results in: mov rcx,rdx
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AST Decoration
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54
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Identifiers get updated with
a “decl” object



This is now a decorated AST
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Identifiers get updated with
a “decl” object



We need additional decorations
• Where is a variable in memory?
• Let’s store that in the AST!

• We will need a point(er) of reference, and map out 
our memory appropriately.

• We call this data the “RuntimeEntity” object, for each 
variable.
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Runtime Entity

LocalDecl Type

int x = 3; int ≡ 4 bytes

int y = x + 7; int ≡ 4 bytes
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Reference Offset

rbp -8

rbp -16 ???



Stack

• Push and Pop always operate 64-bits at a time
• This is because we are in 64-bit mode (long mode)
• Thus, storing data on the stack will always be 8 bytes 

long.
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Runtime Entity

LocalDecl Type

int x = 3; int ≡ 4 bytes

int y = x + 7; int ≡ 4 bytes

SomeObj A = new A(); ClassType ≡ 8 bytes
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Reference Offset Code

rbp -8 push 0 ??

rbp -16 push 0 ??

rbp -24 push 0 ??



Push
• We will create space on the stack by initializing data to 

zero.

• Push will decrement RSP by 8, THEN store the data 
being pushed

• After evaluating the expression, store something in 
the appropriate location.
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Static Variables
• We are targeting position-independent code
• This means that .bss is not easy to resolve.
• In PA5- optional extra credit to properly implement 

.bss

• For PA4- where can we store static data? (Note, if it 
stays on the stack, doesn’t have to be 8 bytes)
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What about recursion?
• Consider:

Every call of this
function needs a
separate location
for the local variable y and parameter x
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Stack Frame

• Every function call, move up your point of reference 
(which can be RBP or RSP).
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Stack Frame
• Every function call, move up your point of reference 

(which can be RBP or RSP).
• Consider a static method: fn(x)
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x [return addr] ?? ?? ??

RSP
When method starts

RSP+8 RSP-8 RSP-16



Stack Frame

• Consider after local variables declared:
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x [return addr] Old RBP Local var1 ??

RBP
RSP+8

RBP+8
RSP+16

RBP-8
RSP

RBP-16
RSP-8

RBP+16
RSP+24

New Local about to be declared



Stack Frame

• Consider after local variables declared:
• Thus, easier to reference data from rbp (assuming you 

set up your stack frame correctly)
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x [return addr] Old RBP Local var1 Local var2

RBP
RSP+16

RBP+8
RSP+24

RBP-8
RSP+8

RBP-16
RSP

RBP+16
RSP+32



Member Variables (FieldDecl)

• Where are field variables?
• First, let’s figure out the size of a class.
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Member Variables (FieldDecl)

• Where are field variables?
• First, let’s figure out the size of a class.

• Objects should be allocated on the heap. Meaning 
their data should not be on the stack.

• Instead, an object is just an 8 byte pointer
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Map out the data

FieldDecl Runtime Entity Size ASM

int x Base + 0 4 dword [r+0]

int y Base + 4 4 dword [r+4]

A z Base + 8 8 qword [r+8]

69
COMP 520: Compilers – S. Ali



How was the data allocated?

push 0
call mmap

mov [rbp-8],rax

??

A a = new a();

a.y = 3;
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How was the data allocated?

push 0
call mmap

mov [rbp-8],rax

mov rsi,[rbp-8]
mov [rsi+4],3

A a = new a();

a.y = 3;
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FieldDecl
• Thus, the runtime entity for a FieldDecl is, once again, 

some offset

• The base address can be loaded during runtime 
(unlike being an offset from RBP)
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What about this.x?

• What if we are in an instance method?
• Where is the “current object: this”?

73
COMP 520: Compilers – S. Ali



Instance Methods

• SomeClass.myStaticMethod(x) – pretty normal
• a.nonStaticMethod(x,y) – slightly different
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Stack Frame

• a.nonStaticMethod(x,y) – Hidden “this” parameter
• Will be used to find FieldDecl variables in the current 

object instance.
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y x this [return] Old rbp ??

RBP+16
RSP+16

RBP+24
RSP+24

RBP+8
RSP+8

RBP
RSP

RBP+32
RSP+32



System.out.println

• Recall for PA4, miniJava is incomplete because String 
has not yet been implemented (optional for PA5)

• We take in a parameter, and need to output it on the 
screen
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System Calls

• We will be using the SYS_write system call to output 
data to the console.

• Where fd=stdout=1
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Read the mmap system call in starter files

• Find out how sys_write is called, it is very similar to 
sys_mmap

• Implement sys_write where the int parameter to 
System.out.println(int n) is the output byte.

• The printable character ‘0’ is 48, take care for this 
when testing.
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System.out.println

• Outputs one byte (null terminated, so two bytes)
• Do not output a line break (can do this in PA5)

• System.out.println(53)
• System.out.println(50)
• System.out.println(48)
• What will this output? Consult a hex-ascii table.
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Actual Code Generation Step
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Case study: Flat Assembler

• A very simple assembler, outputs x86_64 bytecode
• It compiles the code 3 times (known as passes)

• Only then does it reach “optimization level zero”
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Quick Note: Optimization Level

• Compilers can optimize your code by rewriting it 
efficiently (restructuring your ASTs is one method)

• -O0 (letter O, number zero) does no optimization
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Quick Note: Optimization Level

• Compilers can optimize your code by rewriting it 
efficiently (restructuring your ASTs is one method)

• -O0 (letter O, number zero) does no optimization

• We do not require multiple passes to reach level 0, 
you can instead output inefficient “less than O0” code
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Strategy: Stack-based evaluation

• Everything should be evaluated on the stack, and 
loaded into registers for only short code portions
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Goal: Expressions

• Evaluate: 3+4*5-6
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Goal: Expressions

• Evaluate: 3+4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
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Goal: Expressions

• Evaluate: 3+4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 3
• RHS: visitBinExpr: ?
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Stack

3



Goal: Expressions

• Evaluate: 4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 4
• RHS: visitBinExpr: push 5

88
COMP 520: Compilers – S. Ali

Stack

5
4
3



Goal: Expressions

• Evaluate: 4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 4
• RHS: visitBinExpr: push 5

• Operator is multiply:
• pop rcx, pop rax # Get two operands
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Stack

5 -> X
4 -> X

3

Registers

rax 4
rcx 5



Goal: Expressions

• Evaluate: 4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 4
• RHS: visitBinExpr: push 5

• Operator is multiply:
• pop rcx, pop rax # Get two operands
• imul rcx # Multiply
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Stack

-
-
-
3

Registers

rax 20
rcx 5



Goal: Expressions

• Evaluate: 4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 4
• RHS: visitBinExpr: push 5

• Operator is multiply:
• pop rcx, pop rax # Get two operands
• imul rcx # Multiply
• push rax
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Stack

-
-

20
3

Registers

rax 20
rcx 5



Goal: Expressions

• Evaluate: 3+4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 3
• RHS: visitBinExpr: (done earlier)
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Stack

-
-

20
3



Goal: Expressions

• Evaluate: 3+4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 3
• RHS: visitBinExpr: (done earlier)

• Operator is addition:
• pop rcx, pop rax # get two operands
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Stack

-
-

20 -> X
3 -> X

Registers

rax 3
rcx 20



Goal: Expressions

• Evaluate: 3+4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 3
• RHS: visitBinExpr: (done earlier)

• Operator is addition:
• pop rcx, pop rax # get two operands
• add rax, rcx # do the addition
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Stack

-
-
-
-

Registers

rax 23
rcx 20



Goal: Expressions

• Evaluate: 3+4*5

• visitBinExpr: (visit LHS, visit RHS expressions)
• LHS: visitLiteralExpr: push 3
• RHS: visitBinExpr: (done earlier)

• Operator is addition:
• pop rcx, pop rax # get two operands
• add rax, rcx # do the addition
• push rax # store
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Stack

-
-
-

23

Registers

rax 3
rcx 20



Finally:

• int x = 3+4*5;

• 3+4*5: resolves to 23 on the stack
• Thus:
 pop rax
 mov [rbp-8],rax
• And our local variable now has a value!
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Stack

-
-
-

23 -> X

Registers

rax 23
rcx 20



int x = 3 + 4 * 5;

push 0 # create int x
push 3 # visitLiteralExpr
push 4 # visitLiteralExpr
push 5 # visitLiteralExpr
pop rcx
pop rax
imul rcx
push rax # do 4*5
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int x = 3 + 4 * 5;

push 0 # create int x
push 3 # visitLiteralExpr
push 4 # visitLiteralExpr
push 5 # visitLiteralExpr
pop rcx
pop rax
imul rcx
push rax # do 4*5

pop rcx # load the evaluated 4*5
pop rax # load the earlier 3 (LHS)
add rax,rcx # do LHS+RHS
push rax # store result on stack
pop rax # get result
mov [rbp-8],rax # store in x
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Is it really necessary?

push 4 # visitLiteralExpr
push 5 # visitLiteralExpr
pop rcx
pop rax

Why not: mov rcx,5
  mov rax,4
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That would actually be the second pass

• We will go more in-depth about optimization soon, 
but for now, unoptimized code is fine.

• Idea: “condense X pushes, and Y pops (where X=Y) 
into move operations”

• Can wait until PA5
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Visit Identifier?

Goal: 3 + y
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Visit Identifier?

Goal: 3 + y
• push 3
• push [rbp-16] # Push it on the stack
• pop rcx
• pop rax
• add rax,rcx
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Second Pass (Opcode size reduction)

• Recall cache slides from earlier
• Why do I want to reduce the size of my code?

103
COMP 520: Compilers – S. Ali



Third Pass (instruction size reduction)

• Recall cache slides from earlier

• In your first pass, you greedily pick the largest 
instructions for jumps and calls

• Recall: jump and call is (mostly) relative from your 
current position
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Third Pass (instruction size reduction)

• Recall: jump and call is (mostly) relative from your 
current position

• If we have to patch the instruction, then we want to 
patch it with the same instruction size.
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Consider:

je 0 (1 byte offset) (Address=0) if( x ) {
 …
}

106
COMP 520: Compilers – S. Ali



Consider:

je 0 (1 byte offset) (Address=0)
A bunch of code is generated

(Address=0x30C)

Cannot jump to this address 
using a single byte!!

if( x ) {
 …
}
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Consider:

je 0 (4 byte offset) (Address=0)
A bunch of code is generated

(Address=0x30C)

Cannot jump to this address 
using a single byte!!

Correct solution: greedily pick 4 
byte offset instructions because 
we do not know the offset yet!

if( x ) {
 …
}
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Instruction Patching
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Starter Code

• Recall: InstructionList populates the startAddress and 
listIdx data of any added Instruction object.

• With this listIdx, we can patch it later.

110
COMP 520: Compilers – S. Ali



Consider:

if( y ) { 
 
… 
… 

}  

visitExpression()
_asm.add( new “cmp [rsp],0” );

Instruction jmp = new CondJmp(Cond.E, 0);
_asm.add( jmp );
ifStmt.thenStmt.visit(this); # Generate Code
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Consider:

if( y ) {  
… 
… 

}  

…
Instruction jmp = new CondJmp(Cond.E, 0);
_asm.add( jmp );
thenStmt.visit(…);
_asm.patch( jmp.listIdx,
    new CondJmp( Cond.E,
         … Evaluate offset here …
    )
);
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Consider:

if( y ) {  
… 
… 

}  

…
Instruction jmp = new CondJmp(Cond.E, 0);
_asm.add( jmp );
thenStmt.visit(…);
_asm.patch( jmp.listIdx,
    new CondJmp( Cond.E,
         jmp.startAddress, _asm.size() 
    )
);
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Current Address

Old Address

This constructor will calculate
the relative offset of these two
addresses.



One more thing!

• Under the previous code, visiting a reference loads its 
value on the stack.

• But what about:
a.x = 3;

I need to load it’s ADDRESS when visiting something on 
the left-hand-side of an assignment operation.

114
COMP 520: Compilers – S. Ali



Resolving Assignment Destination

• First: QualRef is resolved exactly like you think it 
should be.

• a.b.c.x
“Load pointer a” -> “ClassA.b is offset +16”
 -> “ClassB.c is offset +8”
 -> “ClassC.x is offset +0”
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Resolving QualRef Destination

•a.b.c.x = ?
“Load pointer a” -> “a.b is offset +16” -> “b.c is offset 
+8” -> “c.x is offset +0”
mov rax,[rbp-8] # Load local “a”
mov rax,[rax+16] # Load a.b pointer
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Resolving Assignment Destination

•a.b.c.x = ?
“Load pointer a” -> “a.b is offset +16” -> “b.c is offset 
+8” -> “c.x is offset +0”
mov rax,[rbp-8] # Load local “a”
mov rax,[rax+16] # Load a.b pointer
mov rax,[rax+8] # Load b.c pointer
mov rax,[rax] # Load data at c.x ?????

117
COMP 520: Compilers – S. Ali



Resolving QualRef Destination

•a.b.c.x = ?
“Load pointer a” -> “a.b is offset +16” -> “b.c is offset 
+8” -> “c.x is offset +0”
mov rax,[rbp-8] # Load local “a”
mov rax,[rax+16] # Load a.b pointer
mov rax,[rax+8] # Load b.c pointer
lea rax,[rax+0] # Load address at c.x
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Resolving QualRef Destination

•visitExpression() # 3 is on the stack
•a.b.c.x = 3
mov rax,[rbp-8] # Load local “a”
mov rax,[rax+16] # Load a.b pointer
mov rax,[rax+8] # Load b.c pointer
lea rax,[rax] # Load address at c.x
pop [rax] # Store top of stack at address rax
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ELF Generation
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ELF Generation

• Let’s be honest, this is not an interesting problem
• You already have seen ELF headers before.
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ELF Generation

• Additionally: testing proper ELF files is a pain

• There is almost no way to tell if your ELF file is 
correctly generated without having a correctly 
generated file that can execute.
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ELF Generation

• Additionally: testing proper ELF files is a pain

• There is almost no way to tell if your ELF file is correctly 
generated without having a correctly generated file that 
can execute.

• Lastly, this is just making sure “this byte goes to that spot, 
that byte here, that byte there”

• You’ve already proven this capability
(otherwise you wouldn’t be taking a 500 level class)
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ELF Generation

• What IS important though: read through the starter 
code

• Fill out how segment and section flags are assigned

• That part is very important.
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PIE

• What is a position-
independent executable?

• http://www.sunshine2k.de/coding/javascript/on
lineelfviewer/onlineelfviewer.html
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PIE

• Every section (and 
segment) is just 
sequentially laid out in the 
file.

• Linux realizes this, and 
loads sections at whatever 
memory address is 
convenient for it.
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PIE

• This is useful for loading 
shared objects into 
another executable.
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PIE

• This is useful for loading 
shared objects into 
another executable.

•Downside: we won’t 
easily know where 
sections are in memory.
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What is helpful in PIE?

• Note, you must have a loaded readable SEGMENT that 
contains the program headers (data on the segments)

• It is helpful to have a section called .shstrtab
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SHSTRTAB

• This section is just a list of names
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ELF Generation

• Fill out the TODO parts in the ELFMaker class
• Once this is done, your code will be generating 

executable files
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Code Testing
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Compile some test file locally

• Assume you are in the folder where “bin” contains 
your class files (compiled Compiler)

java –cp bin miniJava.Compiler ../my/test/file.java
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Compile some test file locally

• Assume you are in the folder where “bin” contains 
your class files (compiled Compiler)

java –cp bin miniJava.Compiler ../my/test/file.java

This will output your “a.out” file.
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SSH to a server I set up

ssh comp520@home.digital-haze.org -p 52025

Username: comp520
Password: comp520
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SSH to a server I set up

ssh comp520@home.digital-haze.org -p 52025

Username: comp520
Password: comp520

Create a folder for yourself with your onyen:
mkdir swali
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Use FileZilla (or any other method)

• Connect to the server:
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Enter your folder
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Double Click
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Drag and drop



Run your a.out file

• Make sure the output matches what you were 
expecting.
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End

141
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