COMP 520 - Compilers

Lecture 15 — PA4 Details

Midterm 2 Postponed to 4/11

* WA3 is out
* Quick questions on REX bit flags, stack framing, and x64

* PA3 — If you haven’t submitted yet, make sure to
submit to Partial only. Your first submission to the
“Full” tests will be your grade, minus a late penalty.

COMP 520: Compilers —S. Ali

Midterm 2

e Cumulative

* Know your:
* |dentification
* Type-Checking
s Visitor Traversal
neAssembly Generation

COMP 520: Compilers —S. Ali

PA4 — A Unique Opportunity

* Have the ability to claim that you wrote a REAL
compiler.

COMP 520: Compilers —S. Ali

PA4 — A Unique Opportunity

* Have the ability to claim that you wrote a REAL
compiler.

 Starter code does the mundane parts of code
generation (make sure bytes are in the right order,
make sure you can set the REX prefix after-the-fact).

COMP 520: Compilers —S. Ali

Course Registration Open

* For our seniors: Show them what UNC students are
capable of. You wrote an x64 compiler, a feat not
many are capable of.

COMP 520: Compilers —S. Ali

Course Registration Open

* For our seniors: Show them what UNC students are
capable of. You wrote an x64 compiler, a feat not
many are capable of.

* For those who will continue with their coursework: if
you didn’t let this class beat you, there shouldn’t be
any other class that can. Treat each as a challenge.

COMP 520: Compilers —S. Ali

Highly Suggested Courses

%COMP 750- Grad Algorithms. An essential course if
yvou want to call yourself a computer scientist.
Difficult, but you will look back on it fondly.

2. COMP 630/541. Get to write an OS / get to
construct a processor, nearly from scratch.

COMP 520: Compilers —S. Ali

Let’s get coding!

"

p—

K

COMP 520: Compilers —S. Ali

Instruction Encoding (c-jump.com)

Optional
Que or two byte Scaled Indexed
instruction opcode (two Byte if the
bytes if the special OFh T T
opcode expansion prefix is &k eulad indexad
present) memory addressing
mode
[I I A N O I
Prefix Bytes
Zero to four “mod-reg-r/m” Displacement.
special prefix byte that specifies This is a zero,
values that the addressing mode one, two, or
affect the and instruction four byte value
operation of operand size. that specifies a
the instruction memory address
This byte is only displacement for
requjred if the the instruction.

instruction supports
register or memory

operands

Immediate
(constant) data.

This is a zero,

one, two, or four
byte constant value
if the instruction has

an immediate operand.

[-

10

)

=

Quick Review of ModRM/SIB

'MOdRMZ http://ref.x86asm.net/coder64.html#modrm byte 32 64

*SIB: http://ref x86asm.net/coder64.html#sib_byte 32 64

11
COMP 520: Compilers —S. Ali

http://ref.x86asm.net/coder64.html#modrm_byte_32_64
http://ref.x86asm.net/coder64.html#sib_byte_32_64

N
1’

=

Instruction Encoding (c-jump.com)

STEP ONE

Number of Bytes 1or2 Oort 0,1,2,0r4 0,1.2,0r4
OpCode SIB Displacement Immediate
Mod |Reg/OpCode R/M SS Index Base
7 6 5 4 3 2 1 0 Bits 7 6 - 1

COMP 520: Compilers —S. Ali

12

* Used to al
* Register o

COMP 520: Compilers —S. Ali

Mod RM

ow operands: rm, r or [rdispt+disp], r

oerands are encoded in the ModRM byte.

13

Mod RM (2)

* Used to allow operands: rm, r or rc

isptdispl, r

* Register operands are encoded in this

* Do you have plain registers?
* Yes: mod=11
* No: mod="??

COMP 520: Compilers —S. Ali

oyte.

14

)

Mod RM (3)

* Memory operation, like [rdisp+disp]

* Do you have a zero displacement?
* Mod=00

* Do you have a 1-byte displacement?
* Mod=01

* 4-byte displacement?
* Mod=10

COMP 520: Compilers —S. Ali

15

Mod Value

COMP 520: Compilers —S. Ali

01 010 110

“R” Index

“Rdisp” Index

16

Mod Value
=1 byte disp

COMP 520: Compilers —S. Ali

01 010 110

“R” Index
RDX=2

“Rdisp” Index
RSI=6

17

i
)

=

Combined: [rsi+XX], rdx
01 010 110

Mod Value “R” Index “Rdisp” Index
=1 byte disp RDX=2 RSI=6

18
COMP 520: Compilers —S. Ali

Combined: [rsi+XXYYZZWW], rdx
10 010 110

Mod Value “R” Index “Rdisp” Index
=4 byte disp RDX=2 RSI=6

19
COMP 520: Compilers —S. Ali

ModRM

* When mod=+11, is the displacement register RSP?

* Then you are forced to output an SIB, even if you
don’t have an index.

COMP 520: Compilers —S. Ali

20

ModRM

* When mod=+11, is the displacement register RSP?

* Then you are forced to output an SIB, even if you
don’t have an index.

* Note: there is an entry in the SIB table to just ignore
the index anyway.

COMP 520: Compilers —S. Ali

21

N
1’

=

Instruction Encoding (c-jump.com)

STEP TWO

Number of Bytes 1or2 Oor1 Oort 0,1,2,0r4 0,1.2,0r4
OpCode Mod-R/M SIB Displacement Immediate
Mod |Reg/OpCode R/M SS Index Base
7 6 5 4 3 2 1 0 Bits 7 6 - 1

COMP 520: Compilers —S. Ali

22

Scaled Index Byte: ridx*mult

* |s your index multiplier x1, x2, x4, x8?
* Then, ss=00, 01, 10, 11 respectively

* Note, for SIB, a displacement register has not yet been
picked.

*SIB forces the ModRM “rdisp” register to be RSP

23
COMP 520: Compilers —S. Ali

Combined: [rsit+rcx*2+XX], r

01 001 110

SS Value “RIDX” Index “RDISP” Index
=multiply by 2 RCX=1 RSI=6

COMP 520: Compilers —S. Ali

24

Take care for exceptions

* Note, RSP cannot be used as an index register.
* Question: what other intricacies are there, and why?

COMP 520: Compilers —S. Ali

25

Take care for exceptions

* Note, RSP cannot be used as an index register.
* Question: what other intricacies are there, and why?

* If getting stuck, it may be useful to draw out a
decision tree.

COMP 520: Compilers —S. Ali

26

PA4 x64 Code Generation

COMP 520: Compilers —S. Ali

oT
oT

Step 1: Finish ModRMSIB Class

nere is starter code on the course website.

ne ModRMSIB class decides which registers are used

in an instruction (it doesn’t care about order, but just
the operands themselves).

28

COMP 520: Compilers —S. Ali

oT
oT

Step 1: Finish ModRMSIB Class

nere is starter code on the course website.

ne ModRMSIB class decides which registers are used

in an instruction (it doesn’t care about order, but just
the operands themselves).

* The “Make” methods need to be completed. An
example for “rm,r” is done.

29

COMP 520: Compilers —S. Ali

ModRMSIB Strategy

e Test instances of this class.

* Qutput the bytes, and make sure your implementation
matches what is on the table.

30
COMP 520: Compilers —S. Ali

private woilc

int mod

Make Methods: rm, r

int regByt

_b.write{ regByte

COMP 520: Compilers —S. Ali

31

Make: [rdisp+disp],r

Implement this inside:

private void Make (
Regb4 rdisp,

COMP 520: Compilers —S. Ali

int disp,

Reg r

32

Make: [ridx*mult+disp],r

Implement this inside:

private void Make (
Regb4 ridx, int mult,

COMP 520: Compilers —S. Ali

int disp,

Reg r

33

Make: [rdisp+ridx*mult+disp],r

Implement this inside:

private void Make (
Regb4 rdisp, Regb4 ridx,
)

COMP 520: Compilers —S. Ali

int mult,

int disp,

Reg r

34

Once you have encoded the table in these
methods...

*You are done with the most difficult part of encoding
assembly into bytecode.

* The operands are the hardest part, and the rest is
material you have seen before.

COMP 520: Compilers —S. Ali

35

Once you have encoded the table in these
methods...

*You are done with the most difficult part of encoding
assembly into bytecode.

* The operands are the hardest part, and the rest is
material you have seen before.

* Opcodes get some bytes, Prefixes get some bytes, and
immediates get some bytes.

36
COMP 520: Compilers —S. Ali

Unsure about how something is encoded?

* Check the tool: https://defuse.ca/online-x86-assembler.htm#disassembly?2

* Test things such as “mov r11,[r10+r8*8+2222]" to
make sure your implementation gets the correct
ModRM and SIB bytes

37
COMP 520: Compilers —S. Ali

https://defuse.ca/online-x86-assembler.htm#disassembly2

Unsure about how something is encoded?

* Check the tool: https://defuse.ca/online-x86-assembler.htm#disassembly?2

* Test things such as “mov r11,[r10+r8*8+2222]" to
make sure your implementation gets the correct
ModRM and SIB bytes

Disassembly:

@: 4f 8b 9c c2 ae 08 00 mov r11l,QWORD PTR [rl@+r8*B+0x8ae]
7: 8e

38
COMP 520: Compilers —S. Ali

https://defuse.ca/online-x86-assembler.htm#disassembly2

Code Generation and Visitor
Traversal

COMP 520: Compilers —S. Ali

Instruction

e Instruction is an abstract class that has some

associated bytecode with it.

* Includes prefix bytes, immediate bytes,

All of these:

COMP 520: Compilers —S. Ali

One or two byte
instruction opcode (two
bytes if the special OFh
opcode expansion prefix is
present)

LT 1 1]

Prefix Bytes
Zero to four
special prefix
values that
affect the
operation of
the instruction

This byte is only
required if the

“mod-reg-r/m”

byte that specifies
the addressing mode
and instruction
operand size.

Optional

Scaled Indexed
Byte if the
instruction uses

a scaled indexed
memory addressing
mode

Immediate

(constant) data.

This is a zero,

one, two, or four

byte constant value

if the instruction has
an immediate operand.

| EEEE]

Displacement.
This is a zero,
one, two, or
four byte value
that specifies a
memory address
displacement for
the instruction.

instruction supports
register or memory

operands

40

Instruction (2)

 The first instruction has a start address of zero.

* The next instruction has a start address of the
previous instruction start address + size.

COMP 520: Compilers —S. Ali

41

Instruction List

e A list of instructions with a few extra items.

* If you add an Instruction to an InstructionList, it will
populate the startAddress and listldx fields.

* (Where listldx is the index of the instruction, e.g., the
Oth instruction has a listldx of 0).

COMP 520: Compilers —S. Ali

42

Instruction Implementations

e Several files in the starter code are marked with
TODOs.

* Find these and implement them just like with
ModRMSIB.

COMP 520: Compilers —S. Ali

43

Example: JMP Imm32

* Consider unconditional jump: jmp imm32

* In our instruction list, find it, opcode OxEO.

public Jmp{int offset) {

opcodeBytes.write(@xE9);

¥64d.writeInt(immBytes,offset);

44
COMP 520: Compilers —S. Ali

Example: JMP Imm32

* Consider unconditional jump: jmp imm32

* In our instruction list, find it, opcode OxEO.
* Then implement it:

* Take notes: the imm32 EEERL e R it IR
is an offset from the PpeodeBytes write(0xEs);
. wbd . .writeInt(immBytes,offset);
start of the next ins.

45

COMP 520: Compilers —S. Ali

Read other implementations as welll

* IDIV: Divide RDX:RAX / rm
* RDX: 00000001, RAX: 00000001

COMP 520: Compilers —S. Ali

46

Read other implementations as welll

 IDIV: Divide RDX:RAX /rm
* RDX: 00000001, RAX: 00000001

* Thus, the operand becomes:
* 4294967297 / rm

*E.g.: 4294967297 / [rbp-16]

COMP 520: Compilers —S. Ali

47

Operands created with ModRMSIB

* How can we actually generate x647?

COMP 520: Compilers —S. Ali

48

Operands created with ModRMSIB

new Push(new Analogous to:
ModRMSIB(Reg64.RBP,16) oush [rbp+16]

);

COMP 520: Compilers —S. Ali

49

Operands created with ModRMSIB

new Push(new Analogous to:
ModRMSIB(Reg64.RBP,16) oush [rbp+16]

);

new Mov_rrm(new ModRMSIB(

Regb64.RSI,Reg64.RCX,4,0x1000,Reg64.RDX

);

mov rdx, [rsi+rcx*4+0x1000]

COMP 520: Compilers —S. Ali

50

Operands created with ModRMSIB

new Push(new Analogous to:
ModRMSIB(Reg64.RBP,16) oush [rbp+16]

);

R operand, then RM operand (so move from memory to register)

i_l

new Mov_rrm(new ModRMSIB(,
mov rdx, [rsi+rcx*4+0x1000]

Reg64.RSI,Reg64.RCX,4,0x1000, Reg64.RDx\/

);

COMP 520: Compilers —S. Ali

51

mov rm,r

Don’t always need to dereference memory locations.

Mov_rmr can also take a plain:
new ModRMSIB(Regb64.RCX, Regb64.RDX)

Results in: mov rex,rdx

COMP 520: Compilers —S. Ali

52

—_% THE UNIVERSITY
I of NORTH CAROLINA
i af CHAPEL HILL

AST Decoration

AST
Reference Expression Statement
BaseRef QualRef New;\
‘ I P UnaryExpr WhileStmt
BinaryExpr [fStmt
ThisRef NewArrayExpr CallExpr BlockStmt
—— JLE LD IXExpr VarDeclStmt
RefExpr AssignStmt
eg£e . LiteralE '
Identifiers get updated with teral=xpr. - IxAssignStmt
. CallStmt
a “decl” object
ReturnStmt

COMP 520: Compilers —S. Ali

—

Declaration
MemberDecl ClassDecl
l ParamDecl
FieldDecl VarDecl
MethodDecl

54

—)

This is now a decorated AST

AST
Reference Expression Statement
BaseRef QualRef New;\
| | P UnaryExpr WhileStmt
BinaryExpr [fStmt

ThisRef NewArrayExpr CallExpr BlockStmt
IdRef NewObjectExpr IXEXpr VarDeclStmt

RefExpr AssignStmt
o o . LiteralExpr IXxAssignStmt

Identifiers get updated with oSt
a “decl” object ReturnStmt

COMP 520: Compilers —S. Ali

—

Declaration
MemberDecl ClassDed]
| ParamDecl
FieldDecl VarDecl
MethodDecl

55

We need additional decorations

* Where is a variable in memory?
* Let’s store that in the AST!

* We will need a point(er) of reference, and map out
our memory appropriately.

* We call this data the “RuntimeEntity” object, for each
variable.

COMP 520: Compilers —S. Ali

56

)

=

Runtime Entity

int x = 3; int = 4 bytes

inty=x+7; int = 4 bytes rbp -16 ?7??

57
COMP 520: Compilers —S. Ali

Stack

* Push and Pop always operate 64-bits at a time
* This is because we are in 64-bit mode (long mode)

* Thus, storing data on the stack will always be 8 bytes
long.

58
COMP 520: Compilers —S. Ali

)

=

Runtime Entity

int x = 3; int = 4 bytes push 0 ??
inty=x+7; int = 4 bytes rbp -16 push 0 ??
SomeObj A = new A(); ClassType = 8 bytes rbp 24 push 0??

59
COMP 520: Compilers —S. Ali

Push

* We will create space on the stack by initializing data to
Zero.

* Push will decrement RSP by 8, THEN store the data
being pushed

* After evaluating the expression, store something in
the appropriate location.

60
COMP 520: Compilers —S. Ali

Static Variables

* We are targeting position-independent code
* This means that .bss is not easy to resolve.

* In PA5- optional extra credit to properly implement
bss

* For PA4- where can we store static data? (Note, if it
stays on the stack, doesn’t have to be 8 bytes)

COMP 520: Compilers —S. Ali

61

)

=

What about recursion?

o Consider° E..:.iclass ﬂ . 5 |
| E private void fn(int x) {
s || int y = 48 + x;
5 1 7

Every call of this

function needs a
separate location
for the local variable y and parameter x

62
COMP 520: Compilers —S. Ali

Stack Frame

* Every function call, move up your point of reference
(which can be RBP or RSP).

COMP 520: Compilers —S. Ali

63

)

Stack Frame

* Every function call, move up your point of reference
(which can be RBP or RSP).

* Consider a static method: fn(x)

RSP+8 RSP-8 RSP-16

RSP
When method starts

COMP 520: Compilers —S. Ali

64

)

=

Stack Frame

* Consider after local variables declared:

LNew Local about to be declared }

RBP+16 RBP+8 RBP-8 RBP-16
RSP+24 RSP+16 RS P+8 RSP RSP-8

T

65
COMP 520: Compilers —S. Ali

)

=

Stack Frame

* Consider after local variables declared:

* Thus, easier to reference data from rbp (assuming you
set up your stack frame correctly)

x| lretmada]|_od e

RBP+16 RBP+8 RBP-8 RBP-16
RSP+32 RSP+24 RSP+16 RSP+8 RSP

T

66
COMP 520: Compilers —S. Ali

Member Variables (FieldDecl)

* Where are field variables?
* First, let’s figure out the size of a class.

COMP 520: Compilers —S. Ali

67

Member Variables (FieldDecl)

* Where are field variables?
* First, let’s figure out the size of a class.

* Objects should be allocated on the heap. Meaning
their data should not be on the stack.

* Instead, an object is just an 8 byte pointer

COMP 520: Compilers —S. Ali

68

)

Map out the data

int x Base + 0 dword [r+0]
inty Base + 4 4 dword [r+4]
Az Base + 8 8 gword [r+8]

69
COMP 520: Compilers —S. Ali

COMP 520: Compilers —S. Ali

How was the data allocated?

push 0 A a = new a();
call mmap
mov [rbp-8],rax

?? a.y = 3;

70

COMP 520: Compilers —S. Ali

How was the data allocated?

push 0 A a = new a();
call mmap
mov [rbp-8],rax

mov rsi,[rbp-8] a.y = 3;
mov [rsi+4],3

71

FieldDec|

* Thus, the runtime entity for a FieldDecl is, once again,
some offset

* The base address can be loaded during runtime
(unlike being an offset from RBP)

COMP 520: Compilers —S. Ali

72

What about this.x?

e What if we are in an instance method?

* Where is the “current object: this”?

COMP 520: Compilers —S. Ali

73

Instance Methods

* SomeClass.myStaticMethod(x) — pretty normal
* a.nonStaticMethod(x,y) — slightly different

COMP 520: Compilers —S. Ali

74

i\
"

=

Stack Frame

* a.nonStaticMethod(x,y) — Hidden “this” parameter

 Will be used to find FieldDecl variables in the current
object instance.

RBP+32 RBP+24 RBP+16 RBP+8
RSP+32 RSP+24 RSP+16 RSP+8 RSP

COMP 520: Compilers —S. Ali

75

System.out.println

* Recall for PA4, minilava is incomplete because String
has not yet been implemented (optional for PA5)

* We take in a parameter, and need to output it on the
screen

COMP 520: Compilers —S. Ali

76

System Calls

* We will be using the SYS_write system call to output
data to the console.

long sys_write(unsigned int fd, const char __user *buf,
size_t count);

* Where fd=stdout=1

COMP 520: Compilers —S. Ali

77

Read the mmap system call in starter files

* Find out how sys_write is called, it is very similar to
Sys_mmap

* Implement sys_write where the int parameter to
System.out.println(int n) is the output byte.

* The printable character ‘0’ is 48, take care for this
when testing.

COMP 520: Compilers —S. Ali

78

System.out.println

e Qutputs one byte (null terminated, so two bytes)
* Do not output a line break (can do this in PA5)

e System.out.printIin(53)
e System.out.printIin(50)

e System.out.printin(48)
* What will this output? Consult a hex-ascii table.

COMP 520: Compilers —S. Ali

Actual Code Generation Step

COMP 520: Compilers —S. Ali

Case study: Flat Assembler

* A very simple assembler, outputs x86 64 bytecode
* It compiles the code 3 times (known as passes)

* Only then does it reach “optimization level zero”

COMP 520: Compilers —S. Ali

81

Quick Note: Optimization Level

* Compilers can optimize your code by rewriting it
efficiently (restructuring your ASTs is one method)

*-00 (letter O, number zero) does no optimization

COMP 520: Compilers —S. Ali

82

Quick Note: Optimization Level

* Compilers can optimize your code by rewriting it
efficiently (restructuring your ASTs is one method)

*-00 (letter O, number zero) does no optimization

* We do not require multiple passes to reach level O,
you can instead output inefficient “less than O0” code

83
COMP 520: Compilers —S. Ali

Strategy: Stack-based evaluation

* Everything should be evaluated on the stack, and
loaded into registers for only short code portions

COMP 520: Compilers —S. Ali

84

Goal: Expressions

e Evaluate: 3+4*5-6

Goal: Expressions

e Evaluate: 3+4*5

S

e visitBinExpr: (visit LHS, visit RHS expressions)

COMP 520: Compilers —S. Ali

86

)

Goal: Expressions

e Evaluate: 3+4*5

\\ 3

e visitBinExpr: (visit LHS, visit RHS expressions)
 LHS: visitLiteralExpr: push 3
* RHS: visitBinExpr: ?

87
COMP 520: Compilers —S. Ali

Goal: Expressions

* Evaluate: 4*5 4

e visitBinExpr: (visit LHS, visit RHS expressions)
* LHS: visitLiteralExpr: push 4
* RHS: visitBinExpr: push 5

88
COMP 520: Compilers —S. Ali

)

)

G,h

5->X
e Evaluate: 4*5 4 -> X

Goal: Expressions

e visitBinExpr: (visit LHS, visit RHS expressions)

* LHS: visitLiteralExpr: push 4

* RHS: visitBinExpr: push 5
* Operator is multiply: fax 4

* pop rcx, pop rax # Get two operands

rcx 5

89
COMP 520: Compilers —S. Ali

)

)

G,h

Goal: Expressions :

e Evaluate: 4*5

e visitBinExpr: (visit LHS, visit RHS expressions)
* LHS: visitLiteralExpr: push 4
* RHS: visitBinExpr: push 5

* Operator is multiply:

* pop rcx, pop rax # Get two operands rax 20
* imul rex # Multiply rex 5

90

COMP 520: Compilers —S. Ali

THE UNIVERSITY
) NORTH CAROLINA
o m

Goal: Expressions :

. WE:
Evaluate: 4*5 50

* visitBinExpr: (visit LHS, visit RHS expressions)
e LHS: visitLiteralExpr: push 4
* RHS: visitBinExpr: push 5

e Operator is multiply:

* pop rcx, pop rax # Get two operands rax 20
e imul rcx # Multiply
* push rax ——

91
COMP 520: Compilers —S. Ali

Goal: Expressions :

e Evaluate: 3+4*5 20

\\ 3

e visitBinExpr: (visit LHS, visit RHS expressions)
 LHS: visitLiteralExpr: push 3
* RHS: visitBinExpr: (done earlier)

92
COMP 520: Compilers —S. Ali

)

)

G,h

Goal: Expressions :

* Evaluate: 3+4*5 20 -> X

e visitBinExpr: (visit LHS, visit RHS expressions)
 LHS: visitLiteralExpr: push 3

* RHS: visitBinExpr: (done earlier)
* Operator is addition: rax 3

* pop rcx, pop rax # get two operands rex 20

93
COMP 520: Compilers —S. Ali

)

)

G,h

Goal: Expressions

e Evaluate: 3+4*5

'\\

e visitBinExpr: (visit LHS, visit RHS expressions)
* LHS: visitLiteralExpr: push 3
* RHS: visitBinExpr: (done earlier)

* Operator is addition:

* pop rcx, pop rax # get two operands rax 23
* add rax, rcx # do the addition rex. 20

COMP 520: Compilers —S. Ali

94

THE UNIVERSITY
) NORTH CAROLINA
o m

Goal: Expressions :

e Evaluate: 3+4*5

ST 3

e visitBinExpr: (visit LHS, visit RHS expressions)
* LHS: visitLiteralExpr: push 3
e RHS: visitBinExpr: (done earlier)

» Operator is addition:

* pop rcx, pop rax # get two operands fax 3
e add rax, rcx # do the addition
e push rax # store ot | 2L

95
COMP 520: Compilers —S. Ali

Finally: :

*int x = 3+4*5;

23 > X
*3+4*5: resolves to 23 on the stack
* Thus:
pop rax
mov [rbp-8],rax rax 23

rcx 20

* And our local variable now has a value!

96
COMP 520: Compilers —S. Ali

intx=3+4*5;

push O # create int x

push 3 # visitLitera
push 4 # visitLitera

push 5 # visitLitera
POpP rcx

pPOp rax

imul rcx

push rax # do 4*5

COMP 520: Compilers —S. Ali

Expr
Expr
Expr

97

)

intx=3+4*5:

push O # create int x pop rcx # load the evaluated 4*5
pop rax # load the earlier 3 (LHS)
add rax,rcx # do LHS+RHS

push rax # store result on stack

push 3 # visitLiteralExpr
push 4 # visitLiteralExpr

push 5 # visitLiteralExpr

POpP rcx pop rax # get result
pPOp rax mov [rbp-8],rax # store in x
imul rex

push rax # do 4*5

COMP 520: Compilers —S. Ali

s it really necessary?

push 4 # visitLitera

oush 5 # visitLitera
00P rcx

pop rax

Why not: mov rcx,5

EX
EX

mov rax,4

COMP 520: Compilers —S. Ali

Or

Or

99

That would actually be the second pass

* We will go more in-depth about optimization soon,
but for now, unoptimized code is fine.

* |dea: “condense X pushes, and Y pops (where X=Y)
into move operations”

e Can wait until PA5

100
COMP 520: Compilers —S. Ali

Visit Identifier?

Goal:3+vy

COMP 520: Compilers —S. Ali

Visit ldentifier?

Goal:3+vy

*push 3
* push [rbp-16] # Push it on the stack
* POP rcx

* POpP rax
e add rax,rcx

102
COMP 520: Compilers —S. Ali

Second Pass (Opcode size reduction)

* Recall cache slides from earlier
* Why do | want to reduce the size of my code?

103
COMP 520: Compilers —S. Ali

Third Pass (instruction size reduction)

e Recall cache slides from earlier

* In your first pass, you greedily pick the largest
instructions for jumps and calls

* Recall: jump and call is (mostly) relative from your
current position

104
COMP 520: Compilers —S. Ali

Third Pass (instruction size reduction)

* Recall: jump and call is (mostly) relative from your
current position

* If we have to patch the instruction, then we want to
patch it with the same instruction size.

105
COMP 520: Compilers —S. Ali

Consider:

je 0 (1 byte offset) (Address=0) if(x) {

)

=

Consider:

je 0 (1 byte offset) (Address=0) if(x) {
A bunch of code is generated
(Address=0x30C) }

Cannot jump to this address
using a single byte!!

COMP 520: Compilers —S. Ali

107

N
',

=

Consider:

je 0/(4 byte offset) (Address=0) if(x) {
A bunch of code is generated
(Address=0x30C) }

Cannot jump to this address
using a single byte!!

Correct solution: greedily pick 4
byte offset instructions because
we do not know the offset yet!

108
COMP 520: Compilers —S. Ali

Instruction Patching

COMP 520: Compilers —S. Ali

Starter Code

* Recall: InstructionList populates the startAddress and
listldx data of any added Instruction object.

* With this listldx, we can patch it later.

110
COMP 520: Compilers —S. Ali

Consider:

if(y){ visitExpression()
_asm.add(new “cmp [rsp],0”);

Instruction jmp = new CondJmp(Cond.E, 0);
) _asm.add(jmp);
ifStmt.thenStmt.visit(this); # Generate Code

111
COMP 520: Compilers —S. Ali

)

Consider:

if(y){
Instruction jmp = new CondJmp(Cond.E, 0);

_asm.add(jmp);
} thenStmt.visit(...);
_asm.patch(jmp.listldx,

new CondJmp(Cond.E,
... Evaluate offset here ...

)
);

112
COMP 520: Compilers —S. Ali

)

Consider:

if(y){
Instruction jmp = new CondJmp(Cond.E, 0);

_asm.add(jmp);
} thenStmt.visit(...);
_asm.patch(jmp.listldx,

/r — new CondJmp(Cond.E,

jmp.startAddress, asm.size()

This constructor will calculate
the relative offset of these two) f
addresses.); Old Address

Current Address

113
COMP 520: Compilers —S. Ali

One more thing!

* Under the previous code, visiting a reference loads its
value on the stack.

 But what about:
a.xX = 3;

| need to load it’'s ADDRESS when visiting something on
the left-hand-side of an assighment operation.

114
COMP 520: Compilers —S. Ali

Resolving Assignment Destination

* First: QualRef is resolved exactly like you think it
should be.

*a.b.c.x

“Load pointer a” -> “ClassA.b is offset +16”
-> “ClassB.c is offset +8”
-> “ClassC.x is offset +0”

115
COMP 520: Compilers —S. Ali

Resolving QualRef Destination

ea.b.c.x = ¢

“Load pointer a” -> “a.b is offset +16” -> “b.c is offset
+8” -> “c.x is offset +0”

mov rax,[rbp-8] # Load local “a”
mov rax,[rax+16] # Load a.b pointer

116
COMP 520: Compilers —S. Ali

Resolving Assignment Destination

ea.b.c.x = ¢

“Load pointer a” -> “a.b is offset +16” -> “b.c is offset
+8” -> “c.x is offset +0”

mov rax,[rbp-8] # Load local “a”
mov rax,[rax+16] # Load a.b pointer

mov rax,[rax+8] # Load b.c pointer

117
COMP 520: Compilers —S. Ali

Resolving QualRef Destination

ea.b.c.x = ¢

“Load pointer a” -> “a.b is offset +16” -> “b.c is offset
+8” -> “c.x is offset +0”

mov rax,[rbp-8] # Load local “a”
mov rax,[rax+16] # Load a.b pointer

mov rax,[rax+8] # Load b.c pointer
s»lea rax,[rax+0] # Load address at c.x

118
COMP 520: Compilers —S. Ali

Resolving QualRef Destination

evisitExpression() #3ison the stack

*a.b.c.x = 3
mov rax,[rbp-8] # Load local “a”

mov rax,[rax+16] # Load a.b pointer

mov rax,[rax+8] # Load b.c pointer
lea rax,[rax] # Load address at c.x
pop [rax] # Store top of stack at address rax

119
COMP 520: Compilers —S. Ali

—_% THE UNIVERSITY
I of NORTH CAROLINA
i af CHAPEL HILL

ELF Generation

ELF Generation

* Let’s be honest, this is not an interesting problem
*You already have seen ELF headers before.

121
COMP 520: Compilers —S. Ali

ELF Generation

* Additionally: testing proper ELF files is a pain

* There is almost no way to tell if your ELF file is
correctly generated without having a correctly
generated file that can execute.

122
COMP 520: Compilers —S. Ali

ELF Generation

e Additionally: testing proper ELF files is a pain

* There is almost no way to tell if your ELF file is correctly
generated without having a correctly generated file that
can execute.

* Lastly, this is just making sure “this byte goes to that spot,
that byte here, that byte there”

* You've already proven this capability
(otherwise you wouldn’t be taking a 500 level class)

123
COMP 520: Compilers —S. Ali

ELF Generation

* What IS important though: read through the starter
code

* Fill out how segment and section flags are assigned

* That part is very important.

124
COMP 520: Compilers —S. Ali

=3 ’
ﬁL“ e Section header takles
—
Hr HName Type
“ 0 SHT NULL
P E — 1 interp SHT PROGEITS
2 .note.gnu.property SHT HOTE
3 .note.gnu.build-id SHT NOTE
4 .note. . LBT-tag SHT HCTE
. . ° 5 .gna.hash Unknown
o What IS a pOSItlon_ & .dynsym SHT DYNSYM
T TAynstr SHT STRTAE
° g gnu,.version Unknown
independent executable?
14 .rela.dyn SHT EELA
11 .rela.plt SHT RELA
12 Linitc SHT PROGEITS 11000
13 .plt SHT PROGEITS 11020
14 .plt.got SHT PROGEITS
* http://www.sunshine2k.de/coding/javascript/on | ple.sec SHT_PROGBITS
. . . . la LCext S5HT FPROGBITS
lineelfviewer/onlineelfviewer.html - rims T PROGEITS
18 rodata SHT PROGEITS
13 .eh_frame hdr SHT PROGBITS
20 .2h frame SHT PROGEITS
21 .init array SHT INIT ARRAY Ox0
22 .fini_array SHT FINI_ARRAY 0x0
23 TAynamic SHT DYNAMIC
24 . got SHT PROGEITS
25 .data SHT PROGEITS
Z2a .bas= SHT HMCEITS
27 . COmment SHT PROGEITS
2B . Bymtak SHT SYMTLAE
29 . 2trtab SHT STRTAE
30 .shstrtab SHT STRTAE

COMP 520: Compilers —S. Ali

Section header tables

Hr HName Type
“ “ 0 SHT NULL
P E — _ 1 .interp SHT PROGBITS
2 .note.gnu.property SHT HOTE
3 .note.gnu.build-id SHT NOTE
4 .note. . LBT-tag SHT HCTE
° 5 nu.hash Unknown
* Every section (and ; armem -
7 .dynstr SHT STRTAE

segment) is just e e

. *® * 10 .rela.dyn SHT_RElL
sequentially laid out in the =
- 12 Linit SHT_FRCEEITS
fl I e 13 .plt SHT PROGEITS
° 14 .plt.got SHT PROGBITS
15 .plt.zac SHT_FRCEEITS
iR Lext SHT_PRCEEITS
17 Fini SHT_FRCEEITS
18 . rodata SHT_FRCEEITS
S Linux realizes this and 19 .eh_frame hdr SHT PROGBITS
' 20 .eh_frame SHT_FRCEEITS
. 21 .init array SHT INIT ARRAY Ox0
loads sections at whatever |- S
. 23 TAynamic SHT_DYHLHIC
memory address is
25 data SHT_FRCEEITS
° e Za == SHT_HCEITS
convenient for it.
28 . Bymtak SHT_SYHTEE
25 . strtab SHT_STRTLE
30 . shstrtab SHT_STRT“E

COMP 520: Compilers —S. Ali

Section header tables

[

.interp SHT PROGEITS

Hr HName Type
& DEF SN -

2 .note.gnu.property SHT HOTE
3 .note.gnu.build-id SHT NOTE
4 .note. . LBT-tag SHT HCTE
° . . 5 .gna.hash Unknown
* This is useful for loading ; e o s
T TAynstr SHT STRTAE
[. g gnu,.version Unknown
S h a re d O bJ e CtS I nto] .gnu.version r Unknown
14 .rela.dyn SHT EELA
h b I 11 .rela.plt SHT RELA
another executable.
13 .pltc SHT PROGEBITS
14 .plt.got SHT PROGBITS
15 .plt.sec SHT PROGEITS
1a .Cext SHT PROGEITS
17 .Fini SHT PROGBITS
18 .rodata SHT PROGEITS
19 .eh frame hdr SHT PROGEBITS
20 .eh_frame SHT PROGEBITS
21 .init array SHT INIT RRRAY
22 .fini array SHT FINI RRRLY
23 .dynamic SHT DYNAMIC
24 . got SHT PROGEITS
25 .data SHT PROGBITS
26 .bss SHT HOBITS
27 . COmment SHT PROGEITS
28 . symtak SHT SYMTLE
29 .strtak SHT STRTALE
30 .shstrtab SHT STRTAE

COMP 520: Compilers —S. Ali

Section header tables

Hr HName Type
_ — P E — _ 1 .interp SHT PROGEBITS
2 .note.gnu.property SHT HOTE
3 .note.gnu.build-id SHT NOTE
4 .note. . LBT-tag SHT HCTE
° . . o nu.hash Unknown
* This is useful for loading ;
7 .dynstcr SHT STRTLE

g gnu,.version Unknown

shared objects into :

14 .rela.dyn SHT EELA

h b I 11 .rela.plt SHT RELA
another executable. P s smocsITS
13 .plt SHT PROGEITS
14 .plt.got SHT PROGBITS
15 .plt.=ec SHT PROGEITS
15 . TEXT SHT PROGBITS
17 .fini SHT PROGBITS

* Downside: we won’t -

20 .eh_frame SHT PROGBITS
. I k h 21 .init_array SHT INIT ARRAY 0x0
e a S I y n OW W e re 22 .fini array SHT FINI ARRAY 0x0
23 .dynamic SHT DYNAMIC
° e 24 .got SHT PROGBITS
sections are In memory. -
25 .bss= SHT NOBITS
27T . Comment SHT PROGEITS
28 .symtab SHT SYMTLE
25 .strtab SHT STRTAE
30 .shstrtab SHT STRTAE

COMP 520: Compilers —S. Ali

What is helpful in PIE?

* Note, you must have a loaded readable SEGMENT that
contains the program headers (data on the segments)

* It is helpful to have a section called .shstrtab

129
COMP 520: Compilers —S. Ali

3580
3520
35C0
35E0
3c00
3620
3c4d
Zeed

COMP 520:

SHSTRTAB

* This section is just a list of names

73|74\ 72(74(6]1 | 62| 00(2E |73\ 68|73|74 |72\ 74|61l |62\ 00 2E|(6S9 6E |74 (65|72 |70|00|2E|cE|6F|74|65|2E|67||s|(t|r|t|akb .shstlrtakbk interp - ot e
6E |75 |2E|(T0|(72 &eF|70(65|72 74|75 |00 |2E €E|&F |74 €5 |2ZE|&7 | 6E|75(2E |62 |75 (63 |6C|6d 2D|e53 |64 00| 2E|(|ln|u|. | p|z|o|ple c|t|¥ . noltjel.gnu .lbjuil -1id
GE|6F |74 |65|2E |41 |42 (45 |2D| 74|61l |s7 |00 2E|(67 |6E |75 (2E|(68 |61 |73 (63|00 | 2E |64 |79/ 6E |73 |79| 6D 00| 2E o|te . ABI-tag gnu . halsh dyn s ym
64|79 eE(T3|74 |72 |00(ZE |67 | 6E|TS|2ZE |76 €5(72 |73 &5 eF|6E|00|2E(&7 |cE|75(2E|T7&| 65|72 |73 |69 &F | EE ¥instz gnul .|vlelrs ijon .gnu|.|vjercsilo
SF|72(00|2E|72|65|6C(61|2E 64|75 6E(00|2E(72|65|6C|(€1 | 2E (70 |6C 74|00 | 2E(65 | 6E |65 |74 |00 (2E |70 6C|| relal./dyn rela .|lplt init -
T4 |2E €7 |6F|74 |00\ 2E|(70|eC| 74 |2E |73 €5 €3 (00| 2E|74|65|78 |74 |00(2ZE |66 &5 (cE | 69|00 2E|T7Z|6F &4 |E t .| geot plt. slelc . tlext .| E|in|i .|r|o|d
T4/ 51 00|2E|65 &8 5F|(66|72 &1 &D|c5 5F &8|(c4 |72 00 2E|65 &8 |5F|66 |72 6l 65|00 2E|6%|6E &5 74||t|a eh |flrlame|_|hdz .|jelh|_|flrlame Simni
SF(6l(72|72|61|75(00(2E |66 63 6E |63 (5F (61|72 |72|61 |73 (00(2E 64|79\ 6E |6l |(6D(65|63 | 00|2E(64(6l|74|| |a|r|c|a|y Elijn|i|_|arir|a|¥ dynamioc .da

130
Compilers —S. Ali

(=]

ot

ELF Generation

* Fill out the TODO parts in the ELFMaker class

* Once this is done, your code will be generating
executable files

131
COMP 520: Compilers —S. Ali

af CHAPEL HILL

—_% THE UNIVERSITY
I of NORTH CAROLINA
! l"

Code Testing

Compile some test file locally

* Assume you are in the folder where “bin” contains
your class files (compiled Compiler)

java —cp bin miniJava.Compiler ../my/test/file.java

133
COMP 520: Compilers —S. Ali

Compile some test file locally

* Assume you are in the folder where “bin” contains
your class files (compiled Compiler)

java —cp bin miniJava.Compiler ../my/test/file.java

This will output your “a.out” file.

134
COMP 520: Compilers —S. Ali

SSH to a server | set up

ssh comp520@home.digital-haze.org -p 52025

Jsername: comp520

Password: comp520

135
COMP 520: Compilers —S. Ali

SSH to a server | set up

ssh comp520@home.digital-haze.org -p 52025

UJsername: comp520

Password: comp520

Create a folder for yourself with your onyen:
mkdir swali

136
COMP 520: Compilers —S. Ali

—

@;

Use FileZilla (or any other method)

e Connect to the server:

General Advanced Transfer Settings Charset
Protocol: SFTP - 55H File Transfer Protocol

Host: home.digital-haze.org

Legon Type: Mormal

User: cemp320

Por: 32025

e

Password: Tl

COMP 520: Compilers —S. Ali

137

Enter your folder

Filename " Filesize Filetype Last madifi
Double Click «cache File folder 3/17/2024
local Filefolder 3/17/2024 ¢
ssh Filefolder 3/17/2024¢
comp320 File folder 3/20/2024 °

[.bash_histary 1,533 BASH_HIST... 3/18/2024°
[.bash_logout 220 BASH_LOG.. 1/7/20232:
[.bashre 3,771 BASHRC File 1/7/2023 Z:
[Jesshst 20 LESSHSTFile 3/17/2024 ¢
[.profile 807 PROFILE File 1/7/2023 2:
|_h| enrlm ae adrin cneeceeeful mn SN AS AATANA T

138
COMP 520: Compilers —S. Ali

Remote site: | /home/phy/swali

=" home
----- 7 comp320
I : phy
i ¥ cache
T local
.77 ssh
----- comp320

b cwali

Filename

Filesize

Last modified

Drag and drop

Ermnpty directg

COMP 520: Compilers —S. Ali

| .classpath

| .gitignore

| .project
‘ a.out
I b.out
B oo

I tester.py

1/13/2024 6:39 PM

2/3/2024 11:24 PM

2024 6:39 PM

0/2024 5:19 PM

8/2024 2:14 AM

72024 11:33 AM

2024 11:16 AM

CLASSPATH File
GITIGMNORE File
PROJECT File
OUT File

OUT File

File

Python source file

Run your a.out file

* Make sure the output matches what you were
expecting.

140
COMP 520: Compilers —S. Ali

End

THE UNIVERSITY
of NORTH CAROLINA
af CHAPEL HILL

THE UNIVERSITY
of NORTH CAROLINA
af CHAPEL HILL

THE UNIVERSITY
of NORTH CAROLINA
af CHAPEL HILL

THE UNIVERSITY
of NORTH CAROLINA
af CHAPEL HILL

	COMP 520 - Compilers
	Midterm 2 Postponed to 4/11
	Midterm 2
	PA4 – A Unique Opportunity
	PA4 – A Unique Opportunity
	Course Registration Open
	Course Registration Open
	Highly Suggested Courses
	Let’s get coding!
	Instruction Encoding (c-jump.com)
	Quick Review of ModRM/SIB
	Instruction Encoding (c-jump.com)
	Mod RM
	Mod RM (2)
	Mod RM (3)
	Slide Number 16
	Slide Number 17
	Combined: [rsi+XX],rdx
	Combined: [rsi+XXYYZZWW],rdx
	ModRM
	ModRM
	Instruction Encoding (c-jump.com)
	Scaled Index Byte: ridx*mult
	Combined: [rsi+rcx*2+XX],r
	Take care for exceptions
	Take care for exceptions
	PA4 x64 Code Generation
	Step 1: Finish ModRMSIB Class
	Step 1: Finish ModRMSIB Class
	ModRMSIB Strategy
	Make Methods: rm, r
	Make: [rdisp+disp],r
	Make: [ridx*mult+disp],r
	Make: [rdisp+ridx*mult+disp],r
	Once you have encoded the table in these methods…
	Once you have encoded the table in these methods…
	Unsure about how something is encoded?
	Unsure about how something is encoded?
	Code Generation and Visitor Traversal
	Instruction
	Instruction (2)
	Instruction List
	Instruction Implementations
	Example: JMP Imm32
	Example: JMP Imm32
	Read other implementations as well!
	Read other implementations as well!
	Operands created with ModRMSIB
	Operands created with ModRMSIB
	Operands created with ModRMSIB
	Operands created with ModRMSIB
	mov rm,r
	AST Decoration
	Slide Number 54
	This is now a decorated AST
	We need additional decorations
	Runtime Entity
	Stack
	Runtime Entity
	Push
	Static Variables
	What about recursion?
	Stack Frame
	Stack Frame
	Stack Frame
	Stack Frame
	Member Variables (FieldDecl)
	Member Variables (FieldDecl)
	Map out the data
	How was the data allocated?
	How was the data allocated?
	FieldDecl
	What about this.x?
	Instance Methods
	Stack Frame
	System.out.println
	System Calls
	Read the mmap system call in starter files
	System.out.println
	Actual Code Generation Step
	Case study: Flat Assembler
	Quick Note: Optimization Level
	Quick Note: Optimization Level
	Strategy: Stack-based evaluation
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Goal: Expressions
	Finally:
	int x = 3 + 4 * 5;
	int x = 3 + 4 * 5;
	Is it really necessary?
	That would actually be the second pass
	Visit Identifier?
	Visit Identifier?
	Second Pass (Opcode size reduction)
	Third Pass (instruction size reduction)
	Third Pass (instruction size reduction)
	Consider:
	Consider:
	Consider:
	Instruction Patching
	Starter Code
	Consider:
	Consider:
	Consider:
	One more thing!
	Resolving Assignment Destination
	Resolving QualRef Destination
	Resolving Assignment Destination
	Resolving QualRef Destination
	Resolving QualRef Destination
	ELF Generation
	ELF Generation
	ELF Generation
	ELF Generation
	ELF Generation
	PIE
	PIE
	PIE
	PIE
	What is helpful in PIE?
	SHSTRTAB
	ELF Generation
	Code Testing
	Compile some test file locally
	Compile some test file locally
	SSH to a server I set up
	SSH to a server I set up
	Use FileZilla (or any other method)
	Enter your folder
	Slide Number 139
	Run your a.out file
	End
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145

